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The medical field is experiencing remarkable advancements, notably with the latest
technologies—artificial intelligence (AI), big data, high-performance computing (HPC), and
high-throughput computing (HTC)—that are in place to offer groundbreaking solutions to
support medical professionals in the diagnostic process. Among these innovations, the field
of radiology is receiving the most attention from researchers, where a significant number of
AI/machine learning (ML) medical software and devices have already gained approval
from the U.S. Food and Drug Administration (FDA) [1]. While many AI-driven solutions
primarily focus on radiology, their potential reaches across various facets of the medical
field. This also opens the doors for researchers to study the use of these technologies in
other categories in the medical field.

Early diagnosis is essential in medicine, as it has repeatedly demonstrated its ability to
save lives and extend patient lifespans [2–4]. However, traditional visual diagnosis is often
a time-consuming and costly process, demanding the use of specialized equipment and the
expertise of skilled medical professionals. In contrast, automatic diagnosis, although still in
its early stages, promises to be more cost-effective and efficient, increasing the accuracy of
the diagnosis process. Advancements in the area of automatic diagnosis using integrated,
cutting-edge technologies can significantly increase the number of patients screened for
potential diagnoses. It is worth noting that, while automatic diagnosis leverages AI and
other technologies, it still requires the validation and oversight of medical experts to ensure
its accuracy and safety [5–7].

There is a surge of research efforts integrating AI, ML, and deep learning (DL) into the
diagnosis process. This Special Issue sought to inspire researchers to take this integration
a step further by incorporating newer technologies, such as the Internet of Things (IoT),
cloud computing, big data, HTC, HPC, etc., into the medical diagnosis landscape. These
interdisciplinary research endeavors hold the potential to lay the foundation for innovative
devices and systems that could ultimately receive patents and approval for use in the
medical field.

The collaborative exploration of AI, ML, DL, HCT, HPC, IoT, cloud computing, big
data, and other cutting-edge technologies in medical diagnosis is a testament to the dynamic
nature of healthcare innovation. It highlights the potential for transformative breakthroughs
in diagnosing and treating medical conditions, ultimately benefiting patients and healthcare
professionals alike. Through the tremendous efforts of the research community, the AI/ML-
based medical image processing and analysis issue received outstanding submissions that
add to the current body of knowledge.

In contribution 1, the authors presented an innovative technique for rapid identifica-
tion and classification of histopathology images of lung tissue using convolutional neural
networks (CNNs) with fewer parameters, optimized by the light gradient boosting model
(LightGBM) classifier. They reported an accuracy of 99.6% when testing on the LC25000
dataset. In contribution 2, the authors propose a deep-learning solution to classify four lung
diseases using X-ray images. Their method is based on the EfficientNet B7 model, followed
by fine-tuned layers and hyperparameters. They reported an average test accuracy of
97.42%, a sensitivity of 95.93%, and a specificity of 99.05%. In contribution 3, the authors
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propose a method for isolating and detecting brain tumors using noisy MRI brain images,
anisotropic noise removal filtering, segmentation with an SVM classifier, and isolation of
the adjacent region from the normal morphological processes. They reported that the SVM
could partition data with 98% accuracy.

In contribution 4, the authors propose a radiomics model for discriminating early
from later stages of nasopharyngeal carcinoma (NPC) tumors, which are common in China.
They reported an area under the curve (AUC) of 0.847, which they indicated produced
better results than visual assessments. In contribution 5, the authors propose using deep
learning to automatically segment the parotid gland on computer tomography images.
They reported an area under the curve (AUC) of 0.96 and proved that the parotid gland can
be segmented using the deep learning method. In contribution 6, the authors investigate
the effects of combinations of different preprocessing algorithms on the detection of breast
cancer. They reported that, by comparing the performances of the classification methods,
different preprocessing algorithms effectively detected the presence of breast lesions and
distinguished benign from malignant ones. In contribution 7, the authors propose an
end-to-end CNN transformer hybrid model with a focal loss (FL) function for classifying
skin lesion images. They tested this using the 2018 international skin imaging collaboration
(ISIC) dataset and reported an accuracy of 89.48%.

In contribution 8, the authors propose a novel, anatomy-sensitive retinal vessel seg-
mentation framework to preserve instance connectivity and improve the segmentation
accuracy of thin retinal vessels. TransUNet is the backbone of their framework. They tested
their proposed framework on three public datasets: DRIVE, CHASE-DB1, and STARE. They
reported an improvement of the F1 scores by 0.36% and 0.31%, respectively, for the DRIVE
and CHASE-DB1 datasets. In contribution 9, the authors propose a method for detecting
the stages of diabetic retinopathy. Their approach is a hybrid based on image preprocessing
and ensemble features. They reported that the support vector machine (SVM) classifier
achieved the highest classification accuracy of 98.85% on a publicly available dataset, i.e.,
Kaggle EyePACS. In contribution 10, the authors a modified a convolutional neural network
(CNN) for diabetic retinopathy detection using fundus images at the Sindh Institute of
Ophthalmology and Visual Sciences. They reported 93.72% accuracy, 97.30% sensitivity,
and 92.90% specificity when tested on a small private dataset with data for 398 patients.

In contribution 11, the authors propose a new approach, CAD-ALZ, for the recognition
of multistage Alzheimer’s in which deep features were extracted through the ConvMixer
layer with a block-wise fine-tuning method on a small original dataset. They reported a
sensitivity of 99.69% and an F1-score of 99.61% for this method. In contribution 12, the
authors propose a method of Alzheimer’s disease classification using transfer learning.
They reported an overall accuracy of 97.84%.

In contribution 13, the authors applied six pre-trained DNN models, namely, VGG16,
VGG19, ResNet101, MobileNetV2, InceptionResNetV2, and DenseNet121 for knee os-
teoarthritis (KOA) diagnosis using images obtained from the Osteoarthritis Initiative (OAI)
dataset. They achieved maximum classification accuracies of 69%, 83%, and 89%, respec-
tively, with the ResNet101 DNN model. In contribution 14, the authors evaluated the
deep learning performance of 18F-FDG PET-CT images to predict overall survival in HCC
patients before liver transplantation (LT). Their proposed tool could be a predictive tool
that can effectively determine prognosis and select optimal candidates for transplants. In
contribution 15, the authors propose a diagnostic method for cardiovascular disorders
(CVDs) based on phonocardiogram (PCG) signals. They offer a novel patch-embedding
technique (CVD-Trans) based on convolutional vision transformers. They reported an
accuracy of 99%. In contribution 16, the author proposes using log transformation and
power law transformation to achieve contract and illumination for the purpose of detect-
ing gastrointestinal (GI) diseases. Testing on the KVASIR dataset achieved an accuracy
of 96.71%.

This comprehensive compilation of research articles targeting automatic diagnosis
and other relevant medically related areas where AI, machine learning, and deep learning
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are contributing to supporting medical experts is an excellent resource and an excellent
milestone towards finding optimal solutions to be practically used in hospitals and clinics. It
was noticed that the contributions ranged from lung cancer, brain cancer, and breast cancer
diagnosis to pneumonia, pneumothorax, and tuberculosis. Other research concentrated on
Alzheimer’s, diabetic retinopathy, and knee osteoarthritis. It should be noted that these
are but a few articles that have extensively researched these areas and the use of AI in the
medical field.

Research in AI and medicine is moving toward the achievement of an AI doctor who
can initially diagnose some minor medical conditions [8–10]. It should be noted that the
research community almost agrees that medical diagnosis can never rely solely on AI,
as there always needs to be a human in the loop in the form of a medical expert. This
applies to the use of AI in medicine or in any other field [11–13]. Therefore, we urge the
research community to follow this approach until a time comes when humans can trust AI
to automatically make life-threatening decisions without human intervention.

We thank the contributors to this special edition, and there will be future special
editions that are of interest to the research community and add to the body of knowledge.
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