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A B S T R A C T   

Car manufacturers around the globe are in a race to design and build driverless cars. The concept of driverless is 
also being applied to any moving vehicle such as wheelchairs, golf cars, tourism carts in recreational parks, etc. 
To achieve this ambition, vehicles must be able to drive safely on streets stay within required lanes, sense moving 
objects, sense obstacles, and be able to read traffic signs that are permanent and even temporary signs. It will be a 
completely integrated system of the Internet of Things (IoT), Global Positioning System (GPS), Machine Learning 
(ML)/Deep Learning (DL), and Smart Technologies. A lot of work has been done on traffic sign recognition in the 
English language, but little has been done for Arabic traffic sign recognition. The concepts used for traffic sign 
recognition can also be applied to indoor signage, smart cities, supermarket labels, and others. In this paper, we 
propose two optimized Residual Network (ResNet) models (ResNet V1 and ResNet V2) for automatic traffic sign 
recognition using the Arabic Traffic Signs (ArTS) dataset. Additionally, the authors developed a new dataset 
specifically for Arabic Traffic Sign recognition consisting of 2,718 images taken from random places in the 
Eastern province of Saudi Arabia. The optimized proposed ResNet V1 model achieved the highest training and 
validation accuracies of 99.18% and 96.14%, respectively. It should be noted here that the authors accounted for 
both overfitting and underfitting in the proposed models. It is also important to note that the results achieved 
using the proposed models outperform similar methods proposed in the extant literature for the same dataset or 
similar-size dataset.   

1. Introduction 

Traffic Sign Detection (TSD) is the detection of traffic signs. Traffic 
Sign Recognition (TSR) goes a step beyond TSD by detecting the signs, 
then recognizing and therefore interpreting their meaning. Recent de-
velopments and interest in self-driving cars have greatly increased in-
terest in these fields. Automated systems can navigate through traffic on 
both open roads and intersections. For instance, traffic sign detection in 
Mazda cars uses a camera on top of the windshield to detect and display 
road signs related to the speed limit, stopping, and no entry. It displays 

these signs on the driver’s dashboard to warn the driver of these road 
instructions. The TSR helps in avoiding the driver from getting into 
costly accidents or traffic violation fees, particularly when the driver is 
distracted or tired with significantly lower attention capability. TSR is 
useful in busy or dangerous road situations when the driver has to keep 
his eyes on the road ahead and not on the road signs. The TSR in smart 
cars can avoid traffic fatalities by automatically lowering speed and 
warning drivers of no-overtaking signs, slippery road signs, and 
maximum speed limits. Besides displaying warnings on dashboards, 
smart cars can orally announce the warning, sound special musical 
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notes, recommend the driver to stop to rest or consume a caffeine-rich 
drink, spray special scents to raise the driver’s attention, or recom-
mend that the driver takes control of the car and disables the cruise 
control driving under dangerous road conditions and situations. 

Both TSD and TSR use cameras and video or image analysis as done, 
for instance, in automatic license plate recognition systems [1,2]. TSD 
and TSR challenges are poor visibility during fog, rain, or time of the day 
when sunrays obscure vision and worn out or damaged signs. In [3], 
paper list some of the potential difficulties of traffic sign detection, the 
road video quality and the minimization of false alarms in keeping the 
driver hooked on the automated TSR are very important. 

Traffic signs differ by shape and color and generally fall into five 
main classes: warning signs usually shaped as red triangles, prohibition 
signs usually shaped as red circular signs, reservation signs usually 
shaped as blue rectangular signs, mandatory signs shaped as blue circles, 
and temporary signs appearing as yellow triangular signs. The main 
difference between Arabic traffic signs and other traffic signs is in the 
instructions written in Arabic within the signs and the use of Indian 
numbers rather than Arabic numbers. Additionally, in some cases, both 
Arabic commands and their equivalent English translations appear 
within the signs. Also, in some cases, both Arabic and Indian numbers 
are displayed within the same sign. Some Arabic letters have dots above 
them or below them, which, when missed, change the letter and, 
therefore, the meaning. This means that these dots are part of the 
meaning and should not be missed or omitted by the TSR system. 

The cost-saving and life-saving benefits of developing an Arabic TSR 
system are apparent. The traffic sign recognition system is gaining mo-
mentum in recent years as one of its main applications will be in 
autonomous vehicles. The technology of autonomous vehicles in fact has 
made recent advances but still lacks the optimal universal recognition 
models not only for traffic signs but also for the environment of the 
autonomous vehicles. Therefore, this being the main application will 
require researchers to continuously develop models for traffic sign 
recognition models that could be put to practical use in such applica-
tions. It should be noted that traffic sign recognition has many other 
applications which may include the use by pedestrians who are visually 
impaired. The visually impaired have an advanced walking stick and 
may have a guide dog but would still need to be informed of the traffic 
signs orally. In addition, the same technology can be integrated for the 
visually impaired for other signage recognition. The motivation for such 
work, as presented in this paper, is thus apparent and could be useful for 
many applications and has increased benefits which we will not detail 
here. Whether applied to autonomous vehicles or visually impaired 
applications, researchers from various countries and languages should 
work on the traffic sign from the various languages because the appli-
cations are not bound by geographical location. The system can also be 
helpful in alerting drivers to certain signage that they may have over-
looked to avoid accidents. 

The main objective of this work is to develop a modified model for 
classifying and recognizing Arabic Traffic sign images. The ultimate goal 
is to develop a model that can be applied in practical applications and 
useful to mankind. 

Deep learning is used to develop an automatic Arabic TSR system 
with the capability of recognizing the traffic sign image through Deep 
ResNet networks. Car accidents occur mostly due to human error by 
drivers who either do not observe a sign visually or they observe the sign 
but do not follow the directions set by the sign. For example, a certain 
sign may set the speed at a maximum of 120 km/hr while the driver 
exceeds the maximum speed. Thus, the proposed system is developed to 
automatically recognize Arabic traffic signs with improved robustness 
and efficiency and is equipped with a smart system that can communi-
cate to the driver certain instructions to avoid accidents. It is of the 
utmost importance that the recognition process and classification be 
done with minimal errors. 

This research paper is organized such that Section 2 details the latest 
literature review, Section 3 contains the description of the ResNet, 

Section 4 shows the details of the proposed system, Section 5 contains 
the description of the dataset and experimental setup, and Section 6 
displays and discusses the results. The conclusion and future work are 
highlighted in Section 7, followed by the list of all references. 

2. Literature review 

Traffic sign detection and recognition (TSDR) is an important topic 
for automating driving or providing assistance to drivers. Based on 
image processing, TSDR detects an image and analyzes its specific 
characterizing features to recognize a specific traffic sign. Visuals or 
audio can then alert the driver or control the self-driving vehicle. As 
such, it greatly enhances the quality of driving and relieves pressure off 
the driver, in particular in situations the driver’s eyes must stay on the 
road, and not to the side of the road where the traffic signs are to prepare 
for anticipated difficult driving situations. It can also help when the 
driver’s attention or alertness drops, at times of great distraction, or 
when visibility is poor such as the sun rays hit the driver’s eyes. 

In [3], the authors overviewed traffic sign detection and classifica-
tion methods, including deep learning methods. In [4], the authors 
offered a review of the vision-based system for traffic sign recognition 
and classification. 

Surveyed artificial neural network methods scored the highest ac-
curacies. In particular, deep learning methods such as convolutional 
neural networks (CNN) scored even higher. Some of the traffic sign 
detection and recognition system challenges are variable lighting con-
ditions, fading, blurring, and visibility due, for instance, to fog or rain, 
and obscured signs. Wali et al. advised that merging detection and 
classification under one step and using large image databases may be 
two tips for improving accuracies. The same authors employed RGB 
color segmentation with a Support Vector Machine (SVM) classifier, 
obtaining 95.71% accuracy [5]. Tabernik and Skocaj used deep learning 
with CNN on 200 traffic sign categories to achieve an error rate below 
3% [6]. A traffic sign detection and recognition system for Indian roads 
used an RGB color saliency algorithm to distinguish the sign from other 
surrounding objects, morphological filters to capture the sign shape, and 
nearest-neighbor matching compares the extracted features from those 
stored in a database. This system achieved 98.66% accuracy during the 
day and 97.83% accuracy at night [7]. Image processing techniques are 
used for detecting the sign and a set of CNNs for the recognition of the 
traffic sign achieving a 98.11% accuracy for triangular signs and 99.18% 
for circular signs in [8]. Boujemma et al. explored the same problem 
using two ways: a color segmentation method with CNN, and a fast 
region-based CNN [9]. The authors achieved 93%-95% accuracy in the 
first method, while in the second method, they achieved 94.8% 
accuracy. 

Farhat et al. [10] developed an algorithm for traffic sign detection 
and recognition, using the Maximally Stable Extremal Regions (MSER) 
method for extracting regions of interest and the Oriented FAST and 
Rotated BRIEF features for recognizing the signs. This algorithm was 
implemented on the Xilinx Zynq platform. It was able to identify traffic 
sign shapes using the MSER method with 94% recall and 95% precision 
rates and a mean recognition accuracy of 97%. Lim et al. [11] presented 
a GPU-based real-time traffic sign detection and recognition method that 
is robust against illumination changes and performs region detecting 
and recognition using a hierarchical model. This proposed method 
achieved an F1-score of 0.97 on the chosen dataset. Chung et al. [12] 
proposed an attention-based convolutional pooling neural network 
employing attention mechanism to feature maps to obtain key features 
and convolutional pooling to improve recognition accuracy in harsh 
environments. On the German traffic sign recognition benchmark with 
various noises, this method achieved 66.981% − 83.198% accuracies 
with CNN networks. Zhu et al. [13] used two deep learning networks, a 
fully convolutional network for identifying the coarse regions of traffic 
signs extracted by EdgeBox, and a deep CNN for object classification, 
sign detection, and recognition. Using the Swedish Traffic Signs Dataset 

G. Latif et al.                                                                                                                                                                                                                                    



Alexandria Engineering Journal 80 (2023) 134–143

136

(STSD), this method achieved 97.69% precision and 92.9 % recall. 
Swathi and Suresh employed the multilayer perceptron trained with 

a histogram of oriented gradient features, achieving 97.14% and 95.71% 
recognition accuracies on the circular shape and triangular shape in real- 
time videos, respectively [14]. Dhar et al. also used CNNs to classify 
Bangladeshi signs after filtering grayscale versions of the images with 
Gabor wavelets, emphasizing the edges, extracting regions of interest 
using SVM, achieving 97% classification accuracy, and much lower ac-
curacies with SVM, decision trees, KNN, and ensembles [15]. Fleyeh 
et al. reported the various techniques used for TSDR from ART1, ART2, 
Hopfield, Cellular neural networks, and fuzzy sets and classifiers [16]. 
Jingwen Feng [17] built a TSDR system using Histogram Orientation 
Gradients (HOG) and SVM and then replaced the latter 2 with a 

Maximally Stable Extremal Region (MSER) method and GPS method. 
The average cost of the HOG-based system was 2.4 times the cost of the 
MSER-based system. The GPS method was measured to be 3.8 times 
faster than the MSER method. Loy and Barnes [18] extended the fast 
radial symmetry transform to detect polygons at any orientation 
achieving 95% accuracy. Li et al. [19] combined color invariants image 
segmentation and a pyramid of HOGs for matching the sign shapes, and 
SVM to classify the images. 

Another study [20] used HOG for detecting images and CNN for 
classifying them based on German and Italian traffic sign data scoring 
above 93% accuracy. Møgelmose et al. overviewed accuracy rates of 4 
TSDR approaches using SVM classifiers, CNN, and K-d trees and random 
forests, ranging between 96% and 99%. The ones with CNN scored the 

Fig. 1. Workflow of the methodology for traffic sign recognition.  

Fig. 2. ResNet block diagram.  
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highest on accuracy [21]. 
The TSDR studies rely on image databases for training and testing 

their systems. Among the popular TSDR image databases available on-
line are the German Traffic Sign Recognition Benchmark (GTSRB) and 
the German Traffic Sign Detection Benchmark (GTSDB) [22], Chinese 
Traffic Sign Database [23], Tsinghua [24], Belgian [25], UK [26], and 
LISA [27] databases. 

In this context, it should be noted that researchers are developing ML 
and DL-based systems for other aspects important to humans. The idea is 
to automate tasks that can be done by trained humans with the added 
benefit that the automation reduces cost and eliminates some fallbacks 
such as human errors. Several examples can be seen in exploring ML and 
DL methods in the field of medicine [28], agriculture [29], banking & 
education [30], geography [31], special education [32], and many 

others. DL and ML systems are being explored in all fields of science and 
knowledge and the future smart cities are envisioned to be fully 
automated. 

3. Proposed methodology 

The proposed methodology in this work is illustrated in Fig. 1. The 
first phase involves preprocessing the traffic dataset to prepare it for the 
deep learning models. The dataset is then augmented using techniques 
such as enhancement, rotation, translation, and scaling to address the 
class size and complexity. This results in an augmented dataset con-
sisting of 57,078 images, which serves as the input to four deep learning 
algorithms. These algorithms, referred to as ResNet 1 (Standard), ResNet 
2 (Standard), ResNet 1 (Optimized), and ResNet 2 (Optimized), in this 

Fig. 3. ResNet architecture.  

Fig. 4. Comparison of the ResNet V1 and ResNet V2 architectures.  
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paper, have a detailed architecture presented below. The output of the 
models is the classification of traffic signs into various classes, including 
Road Hump, Left turn, Right turn, and others. 

It should be noted here that the methodology in Fig. 1 in itself is not a 
contribution; however, the main contributions of this paper are the two 
optimized deep learning models, the dataset, and the augmented 
dataset. 

3.1. Residual neural network (ResNet) proposed model 

The improvements in deep learning networks have been spectacular, 
from Lenet to AlexNet, to VGG, GoogleLeNet, and ResNet. The network 
depth has risen from under 10 layers to 50 or more layers breaking the 
100 layers barrier. Deeper networks are investigated, aiming for better 
accuracies. However, accuracy is not proportional to network depth, and 
other factors play a role. At hundreds of layers and at some point, the 
training error and accuracy stop falling and start rising-falling as a result 
of the neural network degradation problem causing the effect of the 
early layers to be diluted. This problem stops the indefinite network 
depth increase. Moreover, before the rise of ResNets, it was difficult for 

the network to approximate the identity mappings of added nonlinear 
layers. With the introduction of ResNets, these barriers were overcome 
[33]. 

The basic building blocks of ResNet are shown in Fig. 2.a. with 
weight blocks that multiply the input matrix by a weight matrix then add 
a bias, and use the ReLU function, which keeps positive inputs as is but 
replaces negative inputs with a zero, and an adder which adds the two 
inputs. A more detailed ResNet block is pictured in Fig. 2.b. The ResNet 
employs a skip connection (top) to pass the identity to the output 
simplifying the generation of the input at the output. In addition, it is 
easier for the network to learn the residual function D(U)-U, where D(.) 
is the desired function to train than it is for the learn D(U). When it is 
desired to pass the input U to the output D(U), the ResNet block con-
sisting of 2 wt blocks, separated by a ReLU is simply trained to produce 
the 0 matrix, which when added to U at the addition block, produces U. 
This is how ResNet helps achieve greater neural network depths, less-
ening the vanishing gradient problem commonly encountered in deep 
networks of tens of layers. The skip connection essentially allows the 
network to use fewer layers at the start of the training as some layers are 
skipped; expediating the training process. As the training progresses, the 

Fig. 5. List of most common traffic signs with their total number of collected images [29].  
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ResNet network begins using the skipped layers. 
Building deeper ResNet networks is made possible by cascading the 

network of Fig. 2.a. several times to reach the desired accuracy and 
reduce the training error as shown in Fig. 3. Some of these blocks may be 
pooling blocks, as when some Convolution or Weights layers generate V 
matrices of a different size than the U matrix, U is resized to match the 
size of the V matrix so that U can be properly added to V at the adder 
block. This resizing materializes by adding (at the adder block) Vi+1 to 
(T. U i), where T is a matrix zero-padded in the rows and columns which 
are missing in the original Ui. Fig. 1 is a cascaded architecture with 
building blocks from Fig. 1.b. 

We propose two ResNet models with modified image parameters and 
a different number of layers for traffic sign classification and compare 
them with the performance of other CNN architectures. The ResNet V1 is 
the model that contains an additional modification of adding the 
shortcut identity to each block of two 3 × 3 filters as shown in Fig. 4. The 
identity mapping is used in all the shortcut connections and the pro-
jection shortcut is applied in situations of mismatch between the input 
and output dimensions. Batch normalization and nonlinear activation 
are used for the shortcut connection to avoid vanishing gradient and 
degradation problems. Eq. (1) shows the calculation of the depth of the 
convolutional layers of ResNet V1. 

V1Network Depth = N × 6+ 2 (1)  

where the residual blocks are designated N. The number of stages is 
represented by the variable i. 

The bottleneck connections are introduced in the ResNet V2 and with 
the depth calculation equation modified to multiply the residual blocks 
by 9 (increased of three compared to V1) filters as shown in Fig. 4. 
Convolutional layers of size 1x1, 3 × 3, and 1 × 1 are the three layers 
inside the residual block. Input dimensions are controlled using the 1 ×

1 layer while smaller dimensions use the 3 × 3 as the bottleneck. The 
depth of the ResNet V2 is calculated using Eq. (2). 

V2Network Depth = N × 9+ 2 (2) 

ResNet 1 starts by dividing the feature maps into two parts, while 
simultaneously doubling the filter maps. ResNet 2 introduces a bottle-
neck connection, where the filter size is determined according to Fig. 4. 
Furthermore, the skip connection’s block size is tripled. Within each 
residual function block, there are three convolutional layers: one with a 
size of [1 × 1], another with [3 × 3], and a final one with [1 × 1]. The 1 
× 1 layer handles the increase and decrease of input dimensions, while 
the 3 × 3 layer serves as a bottleneck, reducing the dimensions. 

Fig. 6. Samples of the newly created dataset for ArTSs [29].  
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3.2. Dataset description 

The ArTS is a newly developed labeled dataset of Arabic Traffic Sign 
images. The dataset is developed at Prince Mohammad Bin Fahd Uni-
versity, AlKhobar, Kingdom of Saudi Arabia, and is made publicly 
accessible for the researchers. The dataset is useful for all types of ap-
plications related to autonomous vehicles, traffic monitoring, and traffic 
safety. It can also be useful for developing applications for persons with 
visual impairments who are unable to see the signs. In [22–27], exam-
ples of datasets related to the dataset developed are presented. The high 
potential for the use of this dataset exists in the development of auto-
mated applications as well as the use in research for increasing the 
classification and recognition of the ArTSs. 

A new dataset for ArTSs is developed for the selected most common 
24 Arabic traffic signs. The dataset consists of 2,718 real captured im-
ages, as shown in Fig. 5 [34]. The images are captured from two major 
cities in the Eastern province of Saudi Arabia, namely, Alkhobar and 
Dammam. The newly developed dataset consists of 2,718 real images 
randomly partitioned into an 80% training set (2,200 images) and a 20% 
testing set (518 images). 

3.3. Data augmentation and preprocessing 

Due to the different dimensions of the RGB images in the dataset, 
there was a need for pre-processing before inputting them into the 
network. The total number of images per traffic sign varies, however, the 
pre-processed dataset consists of 57,078 augmented images. The newly 
developed dataset is stored as 3 channel RGB images with different di-
mensions and variations. As stated, the dataset was randomly portioned 
into 80% training and 20% testing. The training portion of the dataset 

was further partitioned to include 20% validation. The number of classes 
24 corresponding to the 24 most common Arabic Traffic signs were 
numbered to range from 0 to 23, with each representing a class. The 
number of images in each class differs. Fig. 6 shows the different classes 
with their corresponding labels, names, and the number of images. 

To make it more feasible for interested researchers to access the new 
ArTS dataset, the authors in [34] have generated, labeled, and published 
the ArTS dataset. The dataset is comprehensive and is proven to be 
sufficient for training and classification [35]. The current version of the 
published dataset can be used as-is, while future versions may include 
more image variations and numbers. The ArTS dataset is not without 
limitations. The insufficient light and noise variation images, as well as 
the non-inclusion of all the ArTS classes, have limitations that will be 
addressed in future versions of the dataset. 

4. Experimental results and discussion 

We used the ArTS dataset in running several experiments using the 
proposed ResNet V1 and ResNet V2 by varying the parameters to find 
the best configurations of the proposed dataset that will achieve the 
highest accuracy. The experiments are made using a high-end processing 
hardware machine with four NVIDIA Tesla V100 graphical processing 
units, 256 GB memory, and an Intel Xeon having 56 cores of 2.10 GHz 
while the software codes are written in the python programming lan-
guage. Fig. 7 shows the validation accuracies for the different parame-
ters with epochs incremented to a maximum of 200 epochs. As can be 
observed in Fig. 7, the validation accuracy is fluctuating up to approx-
imately 80 epochs meaning that it will not predict new values of the 
dataset correctly using approximately 80 epochs or less. However, as the 
increase above 80 epochs, the fluctuation decreased dramatically, 

Fig. 7. Validation accuracies with different parameters of ResNet V1 and V2.  
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ensuring proper prediction power. The fluctuation becomes almost 
invisible at approximately 120 epochs and above, which indicates that 
the configuration with 120 epochs would have the best prediction 
accuracies. 

The validation loss is also calculated through experimentation on the 
proposed ResNet V1 and ResNet V2 using the ArTS dataset with varying 
configuration parameters and the number of epochs. Fig. 8 that the 
validation loss converges to zero beyond 100 epochs which indicates 
that both ResNet V1 and ResNet V2 fit perfectly and are neither over-
fitting nor underfitting. This also indicates the power of the two versions 
to well generalize the predictive model. 

In Fig. 9, the curves show a comparison of the training and validation 
accuracies of the proposed ResNet V2 using the optimized parameters 
and different epochs. It is seen that both the validation and training have 
reached almost similar values. This means that the gap between the 
training and validation is minimal, ensuring that the proposed model fits 
perfectly with no overfitting or underfitting. 

Using the ArTS dataset, the proposed ResNet V1 model with opti-
mized parameters and varying epochs is now used in the experiments. 
Fig. 10 shows a comparison between the training and validation accu-
racies of the experiments. It is noticed that both values are close to 1 and 
that the gap (difference) between the two values is very low, indicating 
that the model fits well with no overfitting and no underfitting. 

The training and validation loss for the proposed ResNet V2 with 
optimized parameters and various epochs was then calculated and 
shown in Fig. 11. The convergence of both values toward zero indicates 
that the model is fitting well with no overfitting and underfitting. This 
also indicates the generalization power of the model as a predictive 
model. 

The training and validation loss for the proposed ResNet V1 with 
optimized parameters and varying epochs is then calculated and the 
obtained results are displayed in Fig. 12. The convergence of both values 
towards zero indicates that the model fits well with no overfitting and no 
underfitting. This also indicates the generalization power of the model 
as a predictive model. 

Some experiments are performed to predict the performance of the 
proposed optimized ResNet models V1 and V2 using the ArST dataset. 
Table 1 summarizes the results of the experiments and compares the 
performance of the standard ResNet Models V1 and V2 and the proposed 
optimized ResNet models V1 and V2 detailed in this paper. The training 
accuracy of the standard ResNet V1 is 95.73%, while the proposed 
optimized ResNet V1 achieved an average training accuracy of 99.18%, 
with an increase of 3.45%. The results show an average training accu-
racy of 94.82% for the standard ResNet V2, while the proposed opti-
mized ResNet V2 achieved an average training accuracy of 97.55%, 
which increased by 2.73%. The proposed optimized ResNet V1 model 
achieved the best accuracy but it comes at the cost of training time as the 
proposed optimized ResNet V1 model took 8425 s for training which is 
the highest training time among all four models. The validation accuracy 
is also highest for the proposed optimized V1 model, with a validation 
accuracy of 96.14%. Both proposed models have been shown to fit well, 
and results indicated that there is no overfitting and no underfitting. 
Thus, both proposed models can generalize well and classify new data. A 
comparison with other research models will not be of benefit as this 
research is done on a newly developed dataset and once research is done 
on the dataset then a comparison can be done on future research. 

Fig. 8. Validation loss with different parameters of ResNet V1 and V2.  
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5. Conclusion 

In this paper, a vital application of Automatic Arabic Traffic Sign 
Recognition is extensively studied. Residual Networks are used as a 
starting point to tackle the problem of automatic Arabic traffic sign 

Fig. 9. Comparison between training and validation accuracies for ResNet V2 
with optimized parameters. 

Fig. 10. Comparison between training and validation accuracies ResNet V1 
with optimized parameters. 

Fig. 11. Comparison between training and validation loss ResNet V2 with 
optimized parameters. 

Fig. 12. Comparison between validation and test loss ResNet V1 with opti-
mized parameters. 
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recognition. Two optimized ResNet models are proposed version 1 and 
version 2 and are detailed in the paper. The ArTS dataset is used in this 
study. The best average training accuracy and average validation ac-
curacy of 99.18% and 96.14%, respectively, are achieved using the 
proposed optimized ResNet V1. Though, the accuracy is extremely high 
and outperforms other methods reported in recent literature, yet, the 
researchers aspire to continue research on this topic to increase the 
accuracy to nearly 100% because the potential use of traffic sign 
recognition in driverless cars would require extremely high recognition 
rates for safety purpose. The researchers will continue to develop a more 
comprehensive complex dataset of Arabic Traffic Signs to benefit from a 
larger dataset taken under different conditions. We require images taken 
at different seasons, different weather condition especially during 
sandstorms which are frequent in Saudi Arabia, and signs that have 
suffered from degradation. Additionally, the authors would like to use 
the proposed models on embedded systems in real world scenarios to 
ensure that the proposed algorithms are capable to do the functions in 
real-time with not computational delay. Future work will include 
expanding the work to include indoor signage as a method to assist in-
dividuals with disabilities, such as individuals with visual impairments. 
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