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Abstract: Visual impairment should not hinder an individual from achieving their aspirations, nor
should it be a hindrance to their contributions to society. The age in which persons with disabilities
were treated unfairly is long gone, and individuals with disabilities are productive members of
society nowadays, especially when they receive the right education and are given the right tools to
succeed. Thus, it is imperative to integrate the latest technologies into devices and software that
could assist persons with disabilities. The Internet of Things (IoT), artificial intelligence (AI), and
Deep Learning (ML)/deep learning (DL) are technologies that have gained momentum over the past
decade and could be integrated to assist persons with disabilities—visually impaired individuals. In
this paper, we propose an IoT-based system that can fit on the ring finger and can simulate the real-life
experience of a visually impaired person. The system can learn and translate Arabic and English
braille into audio using deep learning techniques enhanced with transfer learning. The system is
developed to assist both visually impaired individuals and their family members in learning braille
through the use of the ring-based device, which captures a braille image using an embedded camera,
recognizes it, and translates it into audio. The recognition of the captured braille image is achieved
through a transfer learning-based Convolutional Neural Network (CNN).

Keywords: braille learning; education for the blind; internet of things (IoT); deep learning; smart
device; convolutional neural networks; transfer learning

1. Introduction

Braille is the universal form of literacy for the blind and visually impaired. Braille
bridges the communication gap between the visually impaired and their surroundings. It
is the only textual representation that the blind and the visually impaired can understand.
A major challenge faced by the blind and the visually impaired is their need to learn the
braille language to be able to read and learn in general. They require a dedicated instructor
and one-to-one supervision to learn braille. Visually impaired individuals living in small
cities or rural areas find it challenging to learn the language due to the limited number
of educational institutes and special education schools present in these locations. There
is also a shortage of resources provided for enhancing the learning environment of these
individuals. Furthermore, the process of learning braille is both time-consuming and
requires specialized personnel due to the need for a specialized instructor to guide and
assist the blind in learning. Therefore, the aforementioned challenges cause many visually
impaired individuals to feel discouraged and unmotivated to learn. If an automated
translation system exists that is proficient in braille, then it will accelerate the learning
process for the visually impaired because computers can process information and translate
braille text much faster than humans [1]. This means that a visually impaired individual
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would be able to read a braille text much faster by having the automated IoT-based system
directly translate a braille document to audio.

Braille recognition systems translate printed braille to its textual and natural language
representations. The dotted format of braille documents is the starting point for any
automated recognition system. The system should be able to capture the dotted format of
the braille language, translate it to the corresponding alphabet letter, and combine the letters
to recognize words. There are different braille systems for different languages; thus, the
development of an automated braille translating system should target a particular language
or should at least have the capability to choose between languages for bilingual users. The
Automatic braille recognition system could use computer vision and machine learning
models like Conventional Neural Networks (CNN), Decision Trees (DT), K-nearest neighbor
(KNN), and Support Vector Machines (SVM) for this purpose. Deep learning (DL) and
computer vision are extensively used for pattern recognition and image classification [2–4].

The main goal of this work is to develop an automated system based on artificial
intelligence for Arabic and English bilingual individuals who are visually impaired. The
main reason for the exact choice of these two languages is that English is taught in many
Arabic-speaking countries; thus, most individuals in Arabic-speaking countries—especially
in the Middle East—are bilingual (proficient in Arabic and beginner to intermediate in
English). Thus, the goal is to develop a device that will assist in the following ways:

1. Teach visually impaired individuals braille with a learn-at-your-own-pace methodol-
ogy without the need for professional Braille instructors;

2. Teach braille to the parents of visually impaired individuals so that they can in turn
teach braille to their children;

3. In terms of recognizing braille characters, assist visually impaired individuals in read-
ing braille documents and books at much faster speeds and with a high accuracy level.

This research work offers a 4-fold contribution consisting of these objectives:

1. Presents an extensive survey of existing techniques to detect Braille in different
languages;

2. Designs an IoT-based system that can fit on the ring finger, simulating the real-life
experience of a visually impaired person;

3. Develops an ML-based model to recognize and translate Arabic and English braille
into audio using deep learning techniques with transfer learning;

4. Creates a new bilingual Arabic–English braille dataset, which is to be expanded using
data augmentation techniques;

5. Perform a performance evaluation study of the entire system with regard to accuracy
and effectiveness.

The research topic is significant because the visually impaired lack access to both
educational centers that have Braille translation systems and instructors for the learning
process. It is estimated by the INEI that only 23.9% of visually impaired individuals manage
to complete their education, thus indicating the need for a system that supports translation
from Braille to text for the integration of the visually impaired into their communities. The
implementation of language translation systems is crucial to restrict the communication gap,
and performing further research is important for providing open sources on how to build
translators. Sometimes, a person may wish to learn braille to teach it or to communicate
with someone with visual disabilities. This improves the daily life activities of the visually
impaired [5].

The rest of the paper is organized as follows: Section 2 discusses a review of the
recent studies, Section 3 explains the methodology proposed, the experimental results are
discussed in Section 4, and the research work is concluded in Section 5.

2. Review of Recent Studies

In [1], researchers suggest a deep learning scheme for character detection with a
position-free touchscreen-based input methodology. This device translates braille input into
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natural language by simply tapping on the dots of each character. The dataset used in this
research is composed of 1258 photographs of sizes 64 × 64 with two categories: Category-A
(a–m) and Category-B (n–z). The dataset was obtained from a screen interface for Android
devices. The input braille text is processed and entered into the Convolution Neural
Network (CNN). Two CNN techniques were used: transfer learning and the sequential
model. The recognition is achieved using a deep learning model trained using the gathered
braille dataset. The classification evaluation was carried out using DL techniques such as
the GoogleNet Inception model, achieving an accuracy of 95.8%, and the sequential model,
achieving a total accuracy of 92.21%.

In [6], the authors proposed a touchscreen to detect Urdu braille characters using ML
methods. The dataset obtained from the National Special Education School is composed of
39 classes sorted into three groups with 13 classes in each group, 144 cases for each class
resulting in 5616 cases in total. The letters are input into the screen. The methodology
uses a Reconstruction Independent Component Analysis (RICA)-based feature extraction
model. The highest-achieving classifier was the support vector machine (SVM) with a
yielded accuracy of 99.73% accuracy. However, other robust ML techniques were used
such as K-nearest neighbors (KNN) and decision trees (DT) for comparison purposes. The
evaluation was conducted in terms of total accuracy, true positive rate, true negative rate,
false positive rate, positive predictive value, negative predictive value, and area under the
receiver operating curve. Unfortunately, this study is only limited to Grade 1 Urdu braille
and does not include Grade 2 Urdu braille with speech and text responses.

In [7], the authors suggest using RICA-based feature extraction methods and auto-
mated tools to extract English braille alphabets. The proposed methodology uses a Grade 1
English braille dataset obtained from a touchscreen from the National Special Education
School along with a position-free braille text entry technique to produce synthetic data to
generate a dataset composed of 2512 cases. The dataset comprises 26 braille English letters
and is divided into two classes: class 1 (1–13) and class 2 (14–26). For character recogni-
tion, Decision Trees (DT), Support Vector Machine (SVM), and K-nearest neighbor (KNN)
with PCA-based feature extraction methods and Reconstruction Independent Component
Analysis (RICA) were implemented. RICA outperformed PCA and the SVM classifier also
achieved an accuracy of 99.85%. Sequential methods and RF methods yielded the highest
accuracy with a value of 90.01%. The performance was evaluated based on total accuracy,
true positive rate, true negative rate, false positive rate, positive predictive value, negative
predictive value, and area under the receiver operating curve. The accuracy achieved is
100% for classes such as a, c, d, h, i, j, p, u, w, and k, 99.87 and 99.60% for other classes such
as b, f, q, s, t, and v. The study is only suitable to Grade 1 English character braille and
cannot be implemented with restricted computation power. The study also does not use
DL methods such as CNN and GoogleNet to enhance the outcome.

Authors in [8] recommend using a Histogram of Oriented Gradient Features and a
Support-Vector Machine (SVM) for braille recognition and feature extraction. The method
can translate Sinhala braille to Sinhala language and English braille to the English language.
The images are processed, segmented, and then recognized using HOG feature extraction
methods and the SVM classifier method. The study uses two types of HOG feature
extraction methods: a cell size of 4 × 4, and another one of 2 × 2. The dataset is composed
of both scanned handwritten and computer-generated braille text. The methodology
can process Grade 1 English characters as well as some Grade 2 characters. The yielded
accuracy was 99%. The authors report that higher processing time was needed in the case
of 2 × 2 cells compared to 4 × 4 cells.

Reference [9] advocates for using a Semantic Retrieval System to assist visually im-
paired individuals in mathematical studies. The methodology begins with translating a
query math formula in braille into MathML code, and then the structural and semantic
meaning is obtained from the MathML expression to produce a multilevel tree. The feature
extraction method used is the conventional vector model. Afterward, in the classification
stage, the K-nearest neighbors method is used to choose a multilevel similarity measure to
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compare between expressions. Lastly, the query produced is translated to braille mathemati-
cal expressions. The dataset was created using MathType and consists of 6925 mathematical
equations and expressions from five languages: Hebrew, Japanese, Tifinagh, Arabic, and
Latin. For each language, 1385 different types of equations were written. This study used
Latin to test the performance of the methodology.

Authors in [10] have used a novel approach of the CNN extraction method to translate
Bangla handwritten text to Bangla braille notation. The study used an object detection
model, Faster-RCNN to draw boundaries over Bangla cells and then used 10 CNN models
for classification. Faster-RCNN is a fast and efficient algorithm. The CNN models used
include VGG16, DenseNet201, ResNet152V2, MobileNet, and ZFNet. The CNN models
were trained and tested using the Microsoft Azure ML platform for calculation using
Standard_NV48s_v3. Results show that the highest achieving accuracy CNN model was
VGG16 with a value of 95%. The methodology was implemented using Python v3, Keras,
and TensorFlow libraries. Furthermore, the dataset was collected from external resources of
handwritten Bangla, the images were resized using a canny edge detection, and a median
filter was applied to decrease the noise and threshold. Afterward, it is converted to black
and white. The dataset comprises 105 classes with 157,500 photographs where 80% were
kept for training and 20% were kept for testing. Each class comprises 1500 photographs.
Unfortunately, this study covered a limited number of conjunctions and many of the
300 conjunctions of the Bangla language were not considered.

In [11], the paper recommends using machine learning (ML) for character recognition
of Hindi handwritten documents to translate to braille text. The pages are first transformed
into a printable form and then converted to braille using UTF-8 codes. The dataset used
is composed of 92,000 images and for each of the 46 characters, 2000 images are used for
classification. However, vowels and Matras are discarded from the dataset. Additionally,
the author uses a Histogram of oriented gradient features of Hindi characters to extract
features. The segmented letters are then classified using an SVM classifier for character
recognition. To produce higher levels of accuracy, the resolution of the image should be
greater than 300 dpi. Further, the range of accuracies achieved is between 87.667% to
97.667%. This study is unique because it tackles a language with limited resources. The
results showed that the classifier failed to predict the letters “HA” and “DHA”, which is
considered a limitation of the proposed model. However, because the cell size used was
upgraded to 4 × 4 the average accuracy increased from 94.65% to 95.56%.

In [12], the study encourages using a Convolution Neural Networks (CNN) system
to classify images of braille and translate them to English characters. The dataset used is
composed of 14,378 braille photographs. The 3-major steps in the conversion process are
pre-processing segmentation and image classification. In pre-processing, the method uses
grayscale conversion, contrast adjustment, finding circles, and inverting colors. Segmen-
tation is divided into line segmentation and cell segmentation. For image classification,
DL algorithms and CNNs are used with nine different layers including, an input layer,
convolutional filter, max pooling, and output layer, etc. The paper yields a high accuracy
with a value of 96.37% for a 500-image containing dataset size. Furthermore, the scheme
possesses high-performance characteristics due to the implementation of deep learning
and not only simple neural networks.

Authors in [13] consider a deep learning-based model that combines the CNN model
to detect characters and transformer models to recognize words. The results showed that
the proposed model achieves high performance in terms of accuracy in detecting characters
and words reaching 98.6% and 96.7%, respectively.

In [14], the authors proposed a hardware device to aid visually impaired individuals.
This device combines the use of long short-term memory (LSTM) along with Raspberry Pi
and the convolutional neural network (CNN). The proposed system recognizes numbers,
letters, dots, and punctuation. Performance-wise, the system achieved a high level of
accuracy, reaching 98%.
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Artificial intelligence (AI) and Deep Learning (ML) have been used in research to
assist students with disabilities as well as in other fields such as the medical field, sign
language, and handwritten text classification. In [15], the authors proposed an automated
AI-based system for assisting the deaf and hard of hearing to communicate with their
surrounding community. Using Random Forest (RF), the authors reported an accuracy of
92.15%. In [2], the author proposed a system for assisting the deaf and hard of hearing
using deep learning (DL). They reported an accuracy of 97.6%. In [3], the authors proposed
an automatic AI-based system for the automatic recognition of multi-lingual handwritten
digits using novel structural features. They reported an accuracy of 96.15%. There are
many more examples of AI and ML being used to automate and develop automatic systems
in many fields including medicine, agriculture, education, etc. The continued pursuit
of optimal solutions will develop over time until the optimal solutions are reached and
developed into patented devices that could actually be used and assist in making people’s
lives better.

Attempts were also made to design a model to perform a reverse operation of what
this current research aims. For instance, the authors in [16] designed a CNN-based model to
recognize real-time Arabic speech and eventually translate it into Arabic text then convert
it into Arabic braille characters. The model works on digits and is yet to be improved to
include alphabets. An accuracy performance of 84% was achieved when adding the ReLU
activation function to the CNN model.

3. Proposed Methodology

The proposed system shown in Figure 1 is designed to be compact, portable, and fitting
on the tip of a finger. Equipped with a digital camera, it is capable of capturing images of
the braille dots for processing. The dimensions of each braille dot are determined based
on the tactile resolution of a person’s fingertips. The dot’s height measures approximately
0.5 mm (0.02 inches), with a vertical and horizontal spacing of 2.5 mm (0.1 inches) between
dot centers and a spacing of 3.75 mm (0.15 inches) between adjacent cells. A standard
braille document measures 11 × 11.5 inches with each line having between 40 and 43 cells.

Figure 1 shows a detailed workflow of the proposed system. During the AI software
processing phase, the captured image with the help of a button will be segmented to exclude
the region of the image that does not contain braille dots. The IoT system follows a series
of image processing steps, including edge detection, binary conversion, hole fitting, and
image filtering. Preprocessing methods are used to reduce noise and enhance the visibility
of the dots. The system also performs segmentation to allow for individual identification of
the letters. During the next step, the image is resized to 16 × 16 pixels. In the braille system,
each letter is represented by a single cell consisting of six dots arranged in two columns
and three rows. Once the image has been extracted, the system undergoes training to
classify the braille characters based on their corresponding classes. Each letter or number is
associated with a specific class, allowing for accurate mapping. The performance of the
algorithms used to train the models is evaluated in terms of accuracy, positive and negative
predicted values, and other relevant metrics. It is important to note that misclassification
errors may arise due to challenges encountered during noise removal, variations in braille
dot sizes, and the process of segmentation.
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Figure 1. Workflow of the proposed system for the IoT-based braille language learning on finger tip.

3.1. Experimental Dataset

This research was conducted on a new built dataset containing images of Arabic and
English braille characters. The dataset is used as an input to test the validity and efficiency

of the proposed methodology and is composed of 28 Arabic characters (from “

@” to “ø



”),

and 26 English characters (from “a” to “z”) as shown in Figures 2 and 3, respectively. The
different augmentation methods are applied to the collected images including width-height
shift, rotation, and brightness which change the shift, rotational, and brightness values,
accordingly. English braille dataset is composed of ‘A’ to ‘Z’ English alphabetical letters
and comprises 500 labeled images for each class which is deemed sufficient for the training,
validation, and testing of the model for braille dots. Similarly, the 26 Arabic characters
dataset was also augmented to have 500 labeled images of each character’s class used for the
training while another 15 non-augmented images of each character were used for testing.
The images were cropped individual letters and the image name contains the number of
the image, the character alphabet, and the type of data augmentation. The images in the
dataset possessed different brightness for better machine learning training and character
recognition. It is important to mention that the detection of braille characters may be
challenging due to their small size, the minimized visual contrast with their background,
similarity between characters. Our dataset design involved printing braille letters on
single-sided A4 embossed paper in blue and white, creating the images. These images were
captured using smartphone cameras, ensuring diversity by varying lighting conditions,
colors, angles, and heights. To optimize processing, the images were converted to grayscale,
and resized to 256 pixels.
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3.2. Convolutional Neural Network-Based Transfer Learning

Convolutional Neural Network (CNN) is an algorithm widely used in computer
vision and deep learning. The algorithm takes an image as input and assigns significance
to several objects in that image to distinguish one from the other. CNN algorithm requires
minimal pre-processing compared to other classification methodologies. The CNN-based
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models are generally divided into three major layers: the convolutional layer, the pooling
layer, and the fully connected layer [17,18]. The algorithm begins with reducing the image
into an easily processed form while preventing the loss of significant features. This aids the
creation of an architecture that can learn features and is scalable to interpret new datasets.

In the convolutional layer, the Kernel/Filter, K, is the element performing the convo-
lution operation in the first part of the layer. The filter traverses the image by moving to
the right until it covers the full width and then down until it covers all pixels. The goal
of convolution operations is to extract high-level features of an image. The results are
of two types: dimensionality is either increased or stays the same by applying the same
padding or convolved features reduced in dimensionality by applying valid padding. CNN
may have multiple convolutional layers. The first layer captures the low-level features
and with additional layers, it adapts the high-level features. This builds a system that can
interpret images.

The next layer is the pooling layer, where the spatial size of the convolved feature
is reduced to minimize the computational power necessary for data processing through
dimensionality reduction. The pooling layer extracts rotational and positional invariant
dominant features for model training. Pooling has two types: average pooling and max
pooling. Average pooling computes the average of all the values from the section of the
image covered by the kernel. On the contrary, max pooling selects the maximum value
from the section covered by the kernel and implements a noise suppressant.

The convolutional layer and the pooling layer compose the ith layer of a CNN. Each
architecture has a unique number of layers depending on the complexity of the image.
Increasing the number of layers assists in capturing additional low-level details but requires
more computational power. Now, the model can interpret the features and complete the
first stage of the architecture to then move to the next stage and feed the classification model.
In the third and last stage or the fully-connected layer, the image is flattened into a column
vector and is fed into the neural network. The model then differentiates between significant
and insignificant features and classifies them using the SoftMax classification technique.
With each layer, the model increases in complexity and can identify more sections of a
photo. Earlier layers extract simpler features and later ones extract more elements used to
identify the object [19].

ConvNet includes several architectures such as LeNet, AlexNet, DenseNet, GoogleNet,
and VGGNet [20]. These models are widely adopted as transfer learning to retrain the
models with the new datasets for different applications. AlexNet is an extension of LeNet
with a deeper architecture. It has eight layers in total: five convolutional layers and
three fully connected layers. All layers are connected to a ReLU activation function.
AlexNet employs data augmentation and dropout techniques to prevent overfitting due to
excessive parameters.

DenseNet can be considered an extension of ResNet, where the output of a previous
layer is added to a subsequent layer. DenseNet proposes concatenating the outputs of
previous layers with subsequent layers, which enhances the distinction in the input of
succeeding layers, thereby increasing efficiency. DenseNet significantly reduces the number
of parameters in the learned model. For this research, the DenseNet-201 architecture was
used. It has four dense blocks, each followed by a transition layer except for the last block,
which is followed by a classification layer. A dense block contains several sets of 1 × 1 and
3 × 3 convolutional layers, while a transition block contains a 1 × 1 convolutional layer
and a 2 × 2 average pooling layer. The classification layer in DenseNet-201 consists of a
7 × 7 global average pool followed by a fully connected network with 28 outputs based on
the 28 Arabic braille letters.

GoogleNet architecture is based on inception modules, which perform convolution
operations with different filter sizes at the same level. This increases the width of the
network. The architecture has 27 layers (22 layers with parameters) and nine stacked
inception modules. At the end of the inception modules, a fully connected layer with a
SoftMax loss function serves as the classifier for the 28 classes of Arabic braille letters.
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3.3. Fine-Tuned VGG16 Architecture

Large-scale visual data classification is usually performed using VGG16 and VGG19
CNN architectures. VGG16 is a CNN that could be combined with transfer learning for
the classification process [21]. VGG16 is divided into three parts: convolutional layers
which utilize filters for feature extraction from images, pooling layers for reducing spatial
size, thereby decreasing the number of parameters and computations, and fully connected
layers for final classification. When combining VGG16 with transfer learning, the model is
expected to become more accurate, faster, and require less training time. This is a result of
the fact that VGG16 is already pre-trained on large datasets and thus can detect particular
features. Transfer learning allows leveraging the VGG16 pre-trained weights thereby
increasing efficiency.

Small convolutional filters are used in the VGG16 architecture to increase network
depth. The input is of size 224 × 224 × 3, where 3 refers to 3 color channels. As depicted
in Figure 4, the input images go through the convolutional layers along with the small
receptive field of size 3 × 3 and the max pooling layers. As shown in Figure 4, the first
two sets of VGG utilize conv3-64 followed by a conv3-128 layer, using the ReLU activation
function. The remaining three sets use conv3-256, conv3-512, and conv3-512, respectively,
also utilizing the ReLU activation function. A stride of 2 and 2 × 2 always accompanies
the convolutional layers in VGG16 and VGG19, while varying the number of channels
between 64 to 512. It should be noted that the only difference between VGG19 and VGG16
is the presence of 16 convolutional layers. The fully connected layer usually has outputs
representing the number of classes and in this case, it has 28 outputs corresponding to the
28 Arabic braille letters.
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4. Results and Discussions

The original and augmented datasets were used in the experiments in order to in-
crease the overall size of the dataset. Various metrics were used in order to evaluate the
performance of the proposed methodology. These include recall, precision, accuracy, and F1
measure [22]. In the proposed model, the idea is to freeze the top twelve layers and unfreeze
the remaining layers to retrain the unfrozen layers. The decision to freeze the initial layers
and retrain the later layers was made to balance pre-trained knowledge while adapting
to our specific task. The determination of optimal layers for freezing and retraining was
based on systematic experimentation, aiming for a balance between prior knowledge and
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task-specific adaptation. This approach was applied to various deep learning models
including VGG19, VGG16, DenseNet, AlexNet, GoogleNet, and LeNet. The proposed
approach was applied to the combined dataset and to both the Arabic and English braille
letters. In order to compare the performance of the proposed approach, the first experiment
was performed using the original freeze weight of the original CNN models applied to the
Arabic braille language dataset. The results are shown in Table 1. It should be noted that
each letter has 500 images being used. These are divided into 300 images (60%) of each
letter for training, 100 (20%) for validation, and 100 (20%) for testing. This percentage was
used for all letters in both the Arabic and English braille alphabets. The experiments are
performed for 30 epochs with a batch size of 512 with Adam optimizer and a learning rate
of 0.001.

Table 1 shows the results of the experiments of the original CNN models using freeze
weight applied to the Arabic braille language dataset. The results indicated that the best
accuracy was achieved using GoogleNet with an average value of 98.63% and 98.4%, 98.4%,
and 98.1% for precision, recall, and F1-measure, respectively. The lowest accuracy was
reported for the GoogleNet algorithm with an average accuracy of 94.50%.

Table 1. Experimental results of freeze weights of the original CNN models for the Arabic braille
language data.

Accuracy Precision Recall F1 Measure

VGG19 98.31% 0.982 0.983 0.983
VGG16 98.63% 0.984 0.984 0.981
DenseNet 95.32% 0.953 0.952 0.953
AlexNet 98.27% 0.976 0.977 0.977
GoogleNet 94.50% 0.942 0.943 0.942
LeNet 85.48% 0.849 0.853 0.851

Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, and Figure 10 show a comparison
of the training and testing validation accuracies for VGG19, VGG16, DenseNet, AlexNet,
GoogleNet, and LeNet, respectively. The comparison shows that both training and testing
validation accuracies approach 100% as expected. These results indicate that the overfitting
and the under-fitting problems were accounted for in this research with no under-fitting or
overfitting problems reported. This is further proven and shown in Figure 11, Figure 12,
Figure 13, Figure 14, Figure 15, and Figure 16 which show the comparison of the training
and testing validation losses for VGG19. VGG16. DenseNet, AlexNet, GoogleNet, and
LeNet, respectively. The comparison shows that both training and testing validation losses
approached zero as expected.
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The experiments were then repeated on the same optimized deep learning algorithms
using the proposed non-freeze weights approach with the Arabic braille language dataset,
as shown in Table 2. The accuracy increased significantly, with the best accuracy achieved
by the VGG16 with an average accuracy of 99.68%, a precision of 98.36%, a recall of 97.96%,
and an F1-measure of 98.16%. The lowest accuracy was still reported for GoogleNet
with an average accuracy of 98.70%. Note that with non-freeze weights, the accuracy
increased by 6.55% compared with the highest reported accuracy in Table 1. It should
be clear here that the experiment was performed on the Arabic braille language dataset
without augmentation.

Table 2. Experimental results of the proposed non-freeze weight-based CNN models for the Arabic
braille language data.

Accuracy Precision Recall F1 Measure

VGG19 99.28% 0.991 0.992 0.992
VGG16 99.68% 0.993 0.991 0.994
DenseNet 96.51% 0.960 0.964 0.965
AlexNet 99.13% 0.989 0.988 0.989
GoogleNet 98.70% 0.984 0.981 0.981
LeNet 86.23% 0.858 0.860 0.861

The experiment is then repeated using the optimized deep learning algorithms using
the proposed non-freeze weight approach but this time on the combined Arabic braille
language dataset with the augmented dataset. The results are shown in Table 3. The results
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indicate yet another increase in accuracy due to expanding the dataset size. The increase of
0.3% is actually significant as compared to results in Table 2 and dramatically significant as
compared to results in Table 1 where the difference is 1.35%. The increase in accuracy is
extremely important because this a proposed system that will serve for assistive learning
for the visually impaired and they have no way of comparing the audio translation with
the original unless they go to the traditional time-consuming touch-and-feel approach.
Table 3 shows that the highest reported accuracy was again achieved using VGG16 with an
average accuracy of 99.98%, precision of 99.4%, recall of 99.5%, and F1-measure of 99.7%.
The lowest accuracy is again reported using th GoogleNet with an average value of 88.5%.

Table 3. Experimental results of the proposed non-freeze weight-based CNN models for the Arabic
braille language augmented data.

Accuracy Precision Recall F1 Measure

VGG19 99.58% 0.995 0.994 0.995
VGG16 99.98% 0.994 0.995 0.997
DenseNet 98.62% 0.981 0.982 0.980
AlexNet 99.45% 0.993 0.991 0.989
GoogleNet 88.50% 0.883 0.879 0.881
LeNet 85.51% 0.850 0.851 0.851

The confusion matrix-based comparison obtained for the various experiments per-
formed above with the best-performing VGG16 model is shown in Figures 17–19. These
are the confusion matrices for the experiments performed on the Arabic braille language
dataset. Figure 17 shows the confusion matrix for the basic VGG16 applied to the Arabic
braille language dataset. It is noticed that even with the basic VGG16, the accuracy is high
but it can be optimized to achieve better results because the application we are targeting is
for the specific purpose of assistive learning technology for the visually impaired. Thus,
an optimal solution can only be achieved as we approach approximately 100% on various
complex datasets of the Arabic braille language dataset. Figure 18 shows the confusion
matrix using the Optimized VGG16 model with the proposed transfer learning approach.
It is noticed that the confusion matrix showed better results but still can stand for improve-
ment for the optimal solution. Therefore, Figure 19 shows the confusion matrix using the
optimized VGG16 along with the proposed transfer learning approach, which resulted in a
further increase of accuracy.
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Similarly, the best-performing model has also been tested using the English braille
language dataset. According to Table 4, the highest achieved accuracy was 99.92% by
Vgg16. Note that Table 4 shows the results of the experiment of applying the proposed
non-freeze weight approach with the optimized CNN models on the combined dataset
of the English braille language dataset with augmentation. The highest accuracy was
achieved using VGG16 and reported as 99.92%, with a precision of 99.5%, recall of 99.4%,
and Fe-Score of 99.5%. The lowest accuracy of 86.79% was reported when using the LeNet.
The VGG16 took 5 h and 20 min for training which is slightly less than the VGG19 model
and relatively more than other compared models. It has been noticed that the individual
braille image test computational time was approximately the same for all models on the
proposed device.
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Table 4. Experimental results of the proposed non-freeze weight-based CNN models for the English
braille language 26 letters augmented data.

Accuracy Precision Recall F1 Measure

VGG19 99.60% 0.991 0.994 0.994
VGG16 99.92% 0.995 0.994 0.995
DenseNet 97.46% 0.969 0.971 0.968
AlexNet 98.37% 0.970 0.970 0.97
GoogleNet 98.21% 0.976 0.978 0.977
LeNet 86.79% 0.864 0.863 0.863

5. Conclusions

Individuals with disabilities should continue to receive the utmost support since with
the right education and tools they have proved themselves to be valuable members of
the community. They contributed in many fields and history has recorded many famous
individuals with disabilities and persons with visual impairment. They became famous be-
cause they achieved things that persons without disabilities and persons with full eyesight
have not been able to achieve. Therefore, society must continue to support persons with dis-
abilities to achieve their full potential. With the advancements in technology, many devices
can be developed to assist persons with disabilities in the education field to enhance their
education, learning, and knowledge. These technology-enhanced devices can assist them
to learn or speed up their learning process. In this paper, we proposed an AI-based device
that can automatically translate Arabic and English braille to the corresponding audio.
This device can serve either Arabic-speaking individuals, English-speaking individuals, or
bilingual individuals. There are many benefits to this device, including but not limited to
teaching visually impaired individuals the braille language, teaching the relatives of the
visually impaired individual the braille language, or assisting visually impaired individuals
who already know braille to read braille documents/books at much faster speeds. The
proposed system optimized deep learning models along with transfer learning. The main
idea of the proposed system is to optimize the deep learning algorithms and then freeze
the first portion of layers and unfreeze the second portion of the layers to allow the systems
to retrain and update the weights accordingly. This resulted in an enhanced accuracy for
both the Arabic language braille and English language braille. In addition, increasing
dataset size and complexity allows for better performance. Therefore, augmentation was
performed for both the Arabic and English braille language datasets to increase the dataset
sizes. The increased sizes of datasets using the proposed method resulted in even higher
optimal accuracies.

Future work in this field will include field testing the device to receive actual feedback
from individuals with visual impairments. The system will continue to be enhanced based
on the feedback from individuals with visual impairments and their relatives.
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