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Abstract
Early detection and diagnosis of brain tumors are essential for early intervention and eventually successful treatment 
plans leading to either a full recovery or an increase in the patient lifespan. However, diagnosis of brain tumors is not 
an easy task since it requires highly skilled professionals, making this procedure both costly and time-consuming. The 
diagnosis process relying on MR images gets even harder in the presence of similar objects in terms of their density, 
size, and shape. No matter how skilled professionals are, their task is still prone to human error. The main aim of this 
work is to propose a system that can automatically classify and diagnose glioma brain tumors into one of the four 
tumor types: (1) necrosis, (2) edema, (3) enhancing, and (4) non-enhancing. In this paper, we propose a combined 
texture discrete wavelet transform (DWT) and statistical features based on the first- and second-order features for 
the accurate classification and diagnosis of multiclass glioma tumors. Four well-known classifiers, namely, support 
vector machines (SVM), random forest (RF), multilayer perceptron (MLP), and naïve Bayes (NB), are used for clas-
sification. The BraTS 2018 dataset is used for the experiments, and with the combined DWT and statistical features, 
the RF classifier achieved the highest average accuracy whether for separated modalities or combined modalities. The 
highest average accuracy of 89.59% and 90.28% for HGG and LGG, respectively, was reported in this paper. It has 
also been observed that the proposed method outperforms similar existing methods reported in the extant literature.

Keywords  Multiclass tumor classification · Statistical features · Texture features · Glioma tumor · Tumor detection · 
Magnetic resonance imaging

1  Introduction

During their lifetime, human beings may face several 
types of diseases which differ in terms of severeness 
and the importance of early-stage detection and type 

of treatment. Brain tumor falls under the category of 
dangerous diseases with a significantly high mortality 
rate, which is better treated if detected at an early stage. 
Reports are showing that prompt and precise detection of 
such disease and eventual subsequent efficient treatment 
will most likely increase patients’ life expectancy and/or 
full recovery [1].

The process of tumor detection and diagnosis is usu-
ally performed by experienced pathologists who will be 
looking for anomalies and well-defined features in the 
collected histological slides and tissues. Following this 
analysis, pathologists may classify patients’ samples as 
being either normal vs. tumor, metastatic vs. primary, 
or the grade/degree of malignancy of the tumor, or the 
type of the tumor [2]. The diagnosis process is usually 
done manually and suffers from several challenges such 
as the number of cases that experts need to analyze and 
eventually file a report in a timely manner, the human 
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error in identifying some of the features, or the subjectiv-
ity in categorizing the tumor grade [3]. It was reported 
that these challenges are only expected to increase and 
become more challenging in the future [1]. Therefore, 
more and more interest and efforts have been shifted 
towards using computer-aided diagnostic tools during the 
tumor detection and classification process [4]. Thus, phy-
sicians being supported with CAD tools are more likely 
to make correct diagnoses and classifications compared 
to relying on self-visual analysis.

Recently, artificial intelligence has proven its effec-
tiveness and success in image classification through its 
computer vision and machine learning subfields. The cre-
ation and rapid development of various machine learning 
techniques in terms of their ability in classifying medical 
images have contributed to the high adoption of CAD 
techniques during medical diagnosis. These techniques 
include the deep learning-based models, which have con-
tributed to the significant improvement of classification 
accuracy [5].

The diagnosis and classification of the glioma tumors 
into either of four classes face many challenges. These 
challenges could be categorized in two categories. The 
first category consists of the lack of resource availabil-
ity; in terms of experts and highly qualified individu-
als. These are being outnumbered with the number of 
cases that need to be analyzed and diagnosed. The second 
category is due to the nature and the size of the tar-
geted classes (which are four in this problem — edema, 
necrosis, enhancing tumor, and non-enhancing tumor) 
which are defined based on the intra-tumoral structures. 
These intra-structure-based four classes offer biologi-
cal interpretation of the annotated image patterns. This 
complexity manifests in the high correlation between the 
characteristics and pixels of the MR images making the 
distinction between the various types of tumor very dif-
ficult and prone to errors, when manual processing is 
applied.

Due to the time-consuming process of diagnosing gli-
oma tumors by highly qualified trained individuals, the 
number of patients that can be processed in a given cer-
tain time is limited. Thus, the diagnosis process is only 
done for patients with suspected tumors which means 
that the patient has already displayed symptoms. This 
does not help in the quest for early diagnosis. In addition, 
since the process is prone to human errors, a misdiagno-
sis may be possible which results in psychological effects 
for the patients when being misdiagnosed with glioma 
tumors. Therefore, if it is possible to develop a system 
that can process the scans of thousands of patients daily 
and be able to accurately diagnose tumors, then such a 
system will help and aid in the early diagnosis of tumors 
not only for patients who have displayed symptoms but 

for any patients that have taken scans for any other rea-
son. This would aid in having patients taking scans dur-
ing their annual check-ups, and the automated system 
will have the computing power to process the vast num-
ber of patients. Such an automated system which is able 
to accurately classify various types of glioma tumors 
does not restrict its use and application to the diagnosis 
phase but also can be utilized during the planning for the 
treatment phase, for instance, during the radiotherapy 
treatment. Also, with this type of disease, multiple opin-
ions from different experts are always sought to confirm 
the diagnosis. This is, in most of the time, very hard to 
achieve in due time due to the non-availability of medical 
experts who will be analyzing the MR images. The pro-
posed automated systems with high accuracy level could 
serve as a second opinion to the diagnosis phase which 
will result in speeding up the actions needed in terms of 
type of treatment and actions.

The aim of this paper is to propose a system that can 
automatically diagnose glioma tumors using MRI images 
(MICCAI BraTS 2018 Dataset) and will also be able to 
classify with high accuracy whether the tumor falls into 
any of the four specified classes. The first novelty of 
our proposed approach lies in generating MRI image 
features from two different domains, namely, the spatial 
domain and the frequency domain. The statistical fea-
tures utilize the spatial information in the images, and 
we get 52 features which describe the various statisti-
cal aspects of the image. The DWT approach captures 
the frequency domain information and provide us with 
another 100 features related to the image texture. The 
unique combination of these features (152 in total) pro-
vides a creative aspect to our proposed methodology. 
Secondly, our approach uses the popular ML classifiers 
for performing the multiclass classification (as opposed 
to binary classification, tumorous/non-tumorous classes) 
of MRI images into 4 classes, namely, (1) necrosis, (2) 
edema, (3) enhancing, and (4) non-enhancing. Lastly, the 
choice of the supervised ML classifiers has been made on 
multiple criteria: ease of implementation (for NB), the 
generalization of the approach (for MLP), handling of 
data variability (for SVM), and improved classification 
accuracy (for RF). The novelty and applicability of our 
approach are later reflected in the performance results 
which show that the proposed model achieves better 
accuracy compared to the existing benchmarking models.

This paper is organized as follows. Section 2 reports 
the most recent work related to the classification of brain 
tumors as well as the various techniques being used. Sec-
tion 3 describes the details of the methodology proposed in 
this research work. Section 4 illustrates the experiments and 
discussion of the reported results. Section 5 concludes this 
work. Section 6 lists all references used.
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2 � Literature review

In this section, we present a detailed review of the research 
that has been performed in the area of multiclass glioma 
tumor identification using machine learning approaches. The 
review presents both a historical perspective and the recent 
advancements that are reported in the extant literature. In 
general, we discuss the approaches from the perspective of 
the types of features used (texture-based or statistical-based), 
machine learning (ML) classification techniques used, data-
sets worked on, the results achieved, and their merits and 
drawbacks. This helps us in identifying the research gap.

In one of the early works by Zacharaki et al. [6], Gabor 
features were extracted from the MRI images of the brain. 
These features were given as input to the SVM classifier to 
identify the presence of tumors in the patient. They were able 
to successfully identify 5 different classes of brain tumors 
with a multiclass classification accuracy of 85%. However, 
the drawback of this research was that the training of the 
classifier was done with only 98 MRI images, which is con-
sidered to be too low. This is also reflected in the low clas-
sification accuracy achieved in this study. In another work 
by Jayachandran et al. [7], an SVM classifier was used but 
with another image, a feature termed co-occurrence matri-
ces. This approach provided a relatively high classification 
accuracy of 96.8% by utilizing a larger dataset of MRI brain 
images (442 images). However, this approach only catered 
to texture-based features, which could have been augmented 
with more features from the statistical domain. Still working 
with the popular SVM classifier, Bahadure et al. [8] were 
able to achieve similar classification accuracy (96.5%) using 
the Berkeley wavelet transform (BWT) features on a DICOM 
and Brain Web datasets consisting of 22 and 44 brain MRI, 
respectively. The versatility of the approach was tested on 
two different datasets; however, the small size of the dataset 
still is a concern for the proof of concept.

In a review paper from Iqbal et al. [9], a comparison of 
various ML classifiers was presented in the context of gli-
oma identification and classification using brain MRI images 
(summarizing about 106 research papers). The paper also 
enlists the various prominent texture-based approaches and 
compares their merits and drawbacks. The details of popular 
datasets used and their relevance to the research domain are 
aptly presented; however, considering the recent advances 
in this field, the paper may already be outdated. Sengupta 
et al. [10] have again tested the SVM classifier but with sta-
tistical features of the MRI images. They have achieved an 
accuracy of 96.3% on their indigenous dataset consisting of 
only 66 MRI images. The accuracy was achieved by utilizing 
a smaller number of features, but the details of the image 
definitions were not properly made aware to the readers. On 
the other hand, Gupta et al. [11] have experimented with 
standard datasets (BRATS and JMCD) to provide a proof 

of concept for their approach based on the gray-level co-
occurrence matrices (GLCM) which represent the texture-
based features of images. The noteworthy point here is that 
they have achieved a higher accuracy of 97.13% through a 
comparative study of three ML classifiers, which are SVM, 
KNN, and NB. However, the reason for choosing these 
classifiers is not properly justified, as well as the method in 
which they reduced the number of features to use in their 
experiment.

In remarkable research by Gilanie et al. [12], both the 
texture-based features (Gabor) and statistical-based features 
(entropy, kurtosis, etc.) were utilized with the SVM classifier 
on the Harvard Medical School Dataset. The classification 
accuracy was significantly very high (99.6%); however, the 
results presented were scattered and not properly summa-
rized. Bhatele et al. [13] and Jena et al. [14] have based 
their experiments on the BraTS dataset and achieved simi-
lar classification accuracy (97%) by employing an ensemble 
classifier with hybrid features and five different ML clas-
sifiers (SVM, KNN, DT, RF, and ensemble), respectively. 
Similar results were also achieved by Oksuz et al. [15] by 
using SVM and KNN classifiers on fused features. The MRI 
dataset they used (Figshare) consisted of about 3000 images; 
however, it is not one of the standard datasets which makes 
it difficult to compare their results with other approaches. 
Latif et al. used multilayer perceptron (MLP) for binary 
classification of tumorous images of the BraTS dataset with 
good accuracy [16]. The authors also performed multiclass 
classification on the same dataset using different classifiers 
such as MLP, NB, and RF. The RF classifier generated better 
results than MLP in their experiments [17].

During the review process, some papers dealt with 
using deep learning (DL) approaches, in contrast to those 
approaches that use manual feature extraction techniques 
with traditional ML classifiers. The popular approach in this 
category is the convolutional neural networks (CNN), which 
automatically extract features from the MRI images and then 
perform classification with their in-built neural network 
(NN) classifier. DL approaches are known for good image 
classification accuracy. So, these approaches are applied to 
MRI as well [18]. However, DL approaches need a relatively 
large set of images for training deep neural networks, but 
the medical imaging datasets are considerably small. So, 
researchers tried to combine DL with traditional approaches. 
For example, CNN features are combined with the SVM 
features for MRI classification [19–21]. The main goal of 
this research is to explore and analyze how far we can go to 
achieve higher glioma tumor classification rates using the 
better selection of the features along with the well-known 
standard classifiers, instead of using the DL methods.

Based on the above review, we propose our approach 
which combines both the texture-based features and statis-
tical-based features for improved classification performance. 
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Discrete wavelet transform (DWT) is used for generating the 
texture-based features, whereas the statistical-based features 
include mean, entropy, kurtosis, etc. We have also used a 
standard BRATS 2018 dataset [22] and achieved an accuracy 
of 90.28% (as will be shown in the results section later).

3 � Methodology

In the first stage, features were extracted from the 
extracted brain part of the MR image by applying an 
ensemble feature set from all four MRI modalities. Since 
tumor parts can have multiple classes, binary classifi-
cation was initially performed with different classifiers 
including SVM, MLP, RF, and NB to classify the MR 
images into tumorous and non-tumorous images. In the 
next step, the same combined texture (DWT) and sta-
tistical features are used followed by the use of well-
known classifiers (SVM, MLP, RF, and NB) to classify 
glioma tumorous images into four classes, i.e., necrosis, 
edema, enhancing, and non-enhancing. A total of 152 
features for each MR image modality were extracted. 
The proposed combined texture (DWT) and statistical 
feature-based technique consist of various stages, which 
are shown in Fig. 1.

Figure 1 details the proposed methodology in this work. 
DWT and statistical features are extracted for the four 
modalities. The combined features are then input to the 
well-known classifiers to classify the images into one of 
the four classes.

3.1 � Dataset description

The dataset used in the brain tumor segmentation is MIC-
CAI BraTS 2018 Dataset [22]. The MICCAI BraTS 2018 
specialize in testing the different strategies used in the 
segmentation of brain tumors in multimodal. BraTS 2018 
focuses on the MRI method in surgeries; they concentrate 
on the segmentation of brain tumors specifically glioma 
tumors and provide images in four different modalities. 
Figure 2 shows the samples of the four different brain 
MRI modalities.

•	 T1: this modality has a small echo and repetition time. 
T1 provides a nice image contrast for the various healthy 
tissues inside the brain, i.e., gray matter, cerebrospinal 
fluid, and white matter.

•	 T2: it has a long time of echo and repetition time but slow 
image acquisition. It provides good contrast for the tumor 
surrounding tissues (edema).

Fig. 1   Proposed combined tex-
ture and statistical feature-based 
glioma tumor classification
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•	 T1c: it is the same as T1, but a contrast agent is applied 
to enhance the contrast.

•	 Flair: it is used to nullify the signal from the fluid, 
suppress the effect of cerebrospinal fluid (CSF), and 
bring out the periventricular hyperintense lesion.

For the experiments, a total of 65 cases of data have 
been used consisting of 39 HGG and 26 LGG. The total 
number of MR images is 40,300 images. Data exists for 
all four modalities in the dataset for both HGG and LGG. 
Figure 3 shows a sample of multiclass glioma labels with 
different tumor types. The image label shows (A) whole 

tumor, (B) tumor core, (C) enhancing tumor, and (D) 
combined all tumor types.

3.2 � Proposed combined texture and statistical 
features

A careful selection of beneficial features is necessary for the 
successful categorization of brain tumor images. The feature 
extraction process helps in diminishing the dimensionality of 
brain tumor images into a succinct set of valuable features. 
A good set of features, which are given as input to classifica-
tion algorithms, offers a better classification performance. 
For the classification of multimodal MR images, we are 
using statistical as well as texture features. The following is 
a brief description of these features.

3.2.1 � Statistical features

Statistical features are extracted using two techniques. The 
first is based on a first-order histogram, and the second 
referred to as a second-order statistical feature is based on 
the co-occurrence matrix. For this study, six first-order and 
seven second-order statistical features are used. This results 
in a total of 52 statistical features using all four MRI modali-
ties. The statistical information of the image is referred to as 
the histogram of the image [23]. Probability density ( D ) is 
a measure of the intensity-level occurrence; this is obtained 
through the division of intensity-level histogram values ( I ) 
by the total number of pixels as shown in Eq. 1:

(1)D(i) =
I(m)

HV
,m = 0, 1,… ..,G − 1

Fig. 2   Pictorial view of brain MR image modalities

Fig. 3   Sample of multiclass glioma labels with different tumor types. The image label shows A whole tumor, B tumor core, C enhancing tumor, 
and D combined all tumor types [22]
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H refers to the horizontal spatial domain resolution cells, 
and V is the vertical spatial domain resolution cells. The varia-
ble G represents the gray levels of the input MR image. Useful 
quantitative first-order statistical features are obtained from 
the image histogram. These features include the (i) mean, 
which measures the average of the intensity of the MR image; 
(ii) variance, which measures intensity variations around the 
mean; (iii) skewness, which measures the degree of asym-
metry around the mean value of the histogram; (iv) kurtosis, 
which is a measure of histogram sharpness (v) energy, which 
measures histogram uniformity; and (vi) entropy, which meas-
ures the randomness of the distribution [24, 25].

The features extracted from the first-order statistics offer 
information about the gray-level distribution of MRI images. 
They do not offer any insights into the relative positions 
of different gray levels in MRI images. The co-occurrence 
matrix, which has second-order statistics, can help in extract-
ing spatial information. The second-order features that are 
extracted using the co-occurrence matrix include (vii) angu-
lar second moment (ASM); (viii) correlation; (ix) inertia; 
(x) absolute value; (xi) inverse difference; (xii) entropy; and 
(xiii) maximum probability which can be calculated using 
Eq. 2 to Eq. 8, respectively:

3.2.2 � Discrete wavelet transform features

In terms of cost and computation, DWT is considered a more 
efficient process [26]. Image texture can be analyzed using 

(2)Svii =
∑G−1

m=0

∑G−1

n=0
[D(m, n)]2

(3)Sviii =
∑G−1

m=0

G−1∑

n=0

m.n.D(m, n) − �x�y

�x�y

(4)Six =

G−1∑

m=0

G−1∑

n=0

(m − n)2.D(m, n)

(5)Sx =

G−1∑

m=0

G−1∑

n=0

|m − n|.D(m, n)

(6)Sxi =

G−1∑

m=0

G−1∑

n=0

D(m, n)

1 + (m − n)2

(7)Sxii = −

G−1∑

m=0

G−1∑

n=0

D(m, n).log2D(m)

(8)Sxiii = max(
m,n

D(m, n))

a wavelet used in image processing as a multi-resolution 
method. In this method, the third level decomposition is used 
to extract the wavelet features. Wavelet coefficients are used 
as feature vectors for the classification phase.

In the proposed method, DWT was also applied for 3 
levels, and the top 100 features were selected. DWT decom-
poses the image into low- and high-frequency sub-bands 
called LL, LH, HL, and HH. LL is the low-frequency 
approximate of the input image that contains the most 
important features of the image and is used for further 
decomposition. LH and HL sub-band images give the hori-
zontal and vertical features of the input image, respectively, 
and the HH sub-band image gives the diagonal features. In 
level 2, the same DWT was applied to the LL-decomposed 
image from level 1. The same process was repeated for level 
3 DWT. Figure 4 shows the process model used for the DWT 
up to level 3 for the input MR image used to extract three-
level DWT features. Daubechies 1 wavelet was used for the 
decomposition of the image at each level. The Daubechies 
1 wavelet works based on the Haar filters [27]. The wave-
let transform function V  of a continuous signal x computes 
wavelet atoms by scaling and translating mother atoms as 
shown in Eq. 9 [28]:

The wavelet transform utilizes filters H and G represented 
in Eq. 10 and Eq. 11, respectively:

Based on Eq. 3 and Eq. 4, the simplest filter Daubechies 1 
is based on the Harr filters in the form of G = ([−1, 1])∕

√
2 

and H = ([1, 1])∕
√
2.

3.3 � Classification techniques

We now present a concise background about the machine 
learning (ML) classifiers which help us in distinguish-
ing among the various types of glioma tumors. Generally 
speaking, they are algorithms that take as input, the various 
features (labeled data) extracted from the MRI images (as 
described in the Proposed Work section) to learn a model. 
This learned model is further utilized for predicting the tar-
get variable (in our case, any of the four types of glioma 
tumors). Such ML algorithms are termed supervised classifi-
ers. In this paper, we have used four different types of super-
vised classifiers, which are support vector machines (SVM), 

(9)Vj,n(x) =
1

2j
v

(
x − 2jn

2j

)

(10)G(n) =
1
√
2

(V
�
x

2

�
, �(x − n))

(11)H(n) =
1
√
2

(�
�
x

2

�
, �(x − n))
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random forest (RF), multilayer perceptron (MLP), and naïve 
Bayes (NB). The choice of using these classifiers is based on 
various criteria such as robustness (SVM), higher accuracy 
(RF), generality (MLP), and simplicity (NB) [29–31]. The 
proposed combined texture and statistical features are used 
as an input for these selected classifiers.

3.3.1 � Support vector machines (SVM)

Support vector machines (SVM) are actually a mathematical 
extension of neural networks which has the ability to clas-
sify linear as well as non-linear data. The way SVM imple-
ments the classification task is by transforming the input 
training data into multidimensional space and constructing 
hyperplanes in higher dimensions [32]. These hyperplanes 
are nothing but decision planes that aid in distinguishing a 
specific group of data from the other types. SVM essentially 
makes a search of those vector points in the space (referred 
to as support vector) which define the decision boundary that 

can provide a large separation between the existing classes. 
To implement the non-linear mapping of higher dimensional 
data, SVM uses what is called kernel functions, which are 
actually mathematical models. Some of the popular kernel 
functions include linear, polynomial, sigmoid, Gaussian, and 
radial basis. These kernel functions differ in their mathemat-
ical complexity, efficiency, and accuracy during the training 
and classification phases. It is observed that SVM has better 
generalization capability as compared to other classification 
approaches, and hence, they are used in situations where 
the number of training samples is less than the number of 
features in the dataset.

3.3.2 � Random forest classifier

Random forests are a type of classifiers that are termed 
ensemble learning classifiers. Such classifiers generate many 
classifiers and aggregate the results of their constituents. 
This results in better prediction accuracy and performance 

Fig. 4   A process model of 
DWT up to level 3 that is 
used for extracting MR image 
features
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as compared to the one where a single classifier is employed 
[33]. Bagging and boosting are two popular methods used 
for implementing ensemble classifiers using decision trees 
(DT). Boosting is a recursive process of using multiple 
DTs to successively improve classification accuracy. How-
ever, in the bagging process, the constituent DTs indepen-
dently make classification decisions, and the final result is 
achieved through majority voting. In RFs, the bagging pro-
cess involves an extra layer of randomness where instead 
of choosing the predictor with the best split at each node, a 
predictor variable is chosen randomly from a subset of good 
predictors at each node. Due to this inherent randomness in 
the prediction process, RF has the ability to circumvent the 
problem of overfitting and generalize much better than other 
classification algorithms.

3.3.3 � Multilayer perceptron neural network (MLP)

A multilayer perceptron (MLP) is a feed-forward neural 
network (NN) consisting of different types of layers [34]. 
Essentially, it consists of the input layer, the hidden layer, 
and the output layer, consisting of a set of neurons (similar 
to the structure of the human brain). The data is given as 
input to the input layer, which actually implements a lin-
ear function. The hidden and output layers are designed to 
implement a non-linear function so as to model the data 
which is not linearly separable. Hence, MLPs are suitable 
for classifying data that inherently cannot be dealt with 
using linear function decision algorithms (e.g., linear regres-
sion). One of the popular non-linear activation functions is 
the sigmoid function which is used in the MLP. However, 
recently researchers have also used ReLU (rectified linear 
unit) in deep learning-based neural networks. The important 
property of MLP is that the neurons of the subsequent hid-
den layers are fully connected with certain weights. During 
the training process, the MLP layers start off with random 
weights, and these weights are iteratively updated based 
on the input data received in the training set. The weights 
are fine-tuned based on predicted output compared to the 
expected output. The backpropagation algorithm is used for 
this purpose. MLPs are widely applied to speech recogni-
tion and computer vision domains for the classification of 
various types of data.

3.3.4 � Naïve Bayes

NB classifier belongs to the supervised machine learning 
algorithms which work on the basic concept of the Bayes 
theorem [35]. NB owes its popularity to the simplicity of the 
mathematical modelling involved and its reasonable perfor-
mance in terms of prediction accuracy in the classification 
tasks. In the abstract sense, the NB implements a conditional 
probability model where a data instance to be classified 

consists of a set of features. Given the observation (input 
data), the probability of predicting an output (the desired 
target variable) depends on the prior probability, the prob-
ability of observing the various data instances for the given 
hypothesis (conditional probability), and the observed data 
itself. One inherent drawback of the NB is that it assumes 
that features which define the input data (and the target vari-
able) are statistically independent of each other. Even though 
this assumption simplifies the NB model mathematically, it 
also has an effect on its prediction accuracy. In spite of this 
weakness, NB is suitable in situations where the training 
data is scarce, and it still provides reasonable classification 
accuracy.

4 � Experimental results

As described in the proposed Methodology section, DWT 
and statistical features are extracted from MR images of 
the MICCAI BraTS dataset. The significance of extracted 
features is studied using time tested machine learning 
approaches RF, SVM, MLP, and NB. The proposed method-
ology is applied to two glioma types LGG and HGG samples 
independently and tested for:

•	 Individual modality performance using mixed statistical 
and DWT feature sets

•	 Combined modalities using statistical, DWT feature sets, 
and mixed feature sets

The accuracy of classification is used as the main met-
ric for performance measurement. Further, other metrics 
such as precision, recall, and F1-score are also measured 
to understand the reliability of the results. Accuracy is 
measured as the fraction of correct classifications. The 
metric recall measures the fraction of actual positive 
tumors classified. The metric precision measures the 
fraction of positive tumor classifications that are actu-
ally correct. Similarly, F1-score is the harmonic mean 
of precision and recall values. For each classifier, the 
experiments are executed for different parameters and are 
tuned for better accuracy. For easy comprehension, the 
results are discussed using the accuracy metric. None-
theless, similar trends can be seen in the other metrics.

Table 1 shows the results obtained when applying the 
combined texture (DWT) and statistical features for each 
modality. For the HGG glioma type, RF achieved an aver-
age accuracy of 88.36% with the highest accuracy achieved 
in classifying the T1c modality. MLP achieved an average 
accuracy of 86.04%, and naïve Bayes achieved an average 
accuracy of 78.11%, while the SVM classifier used with 
a combined feature set achieved an average accuracy of 
83.44% with Flair MR images.
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For LGG glioma types, RF achieved an average accu-
racy of 87.52% with the highest accuracy achieved in 
classifying class 2. MLP achieved an average accuracy 
of 84.67%, and naïve Bayes achieved an average accu-
racy of 76.85%, while the SVM classifier used with a 
combined feature set achieved an average accuracy of 
82.62%. RF has the best overall accuracy using combined 
texture (DWT) and statistical features for the different 
modalities. The highest average accuracy for RF for HGG 
glioma type T1c modality was 88.36% with a precision of 
0.869, recall 0.849, and F measure 0.858, while for LGG 
RF achieved the highest average accuracy for the Flair 
modality of 87.52% with a precision of 0.864, recall of 
0.850, and F measure of 0.857.

Figure  5 shows a visual representation of the data 
obtained in Table 1. It is clear from the figure that RF was 
able to achieve the highest accuracies overall for all of 
the modalities. The visual representation shows that MLP 
achieves the second highest accuracies after RF and that the 
lowest accuracies are achieved when using NB.

Table 2 shows the results obtained using combined 
texture (DWT) and statistical features combining all 
modalities: Flair, T1, T1c, and T2. To test and analyze 
the effectiveness of combining the texture (DWT) and 
statistical features, the experiment was separated into 
three phases: (1) combining modalities with DWT fea-
tures only, (2) combining modalities with statistical fea-
tures only, and (3) combining modalities with combined 

Table 1   Comparison of multiclass glioma tumor classification using combined DWT and statistical features for each MRI modality

Glioma type Classifier Modality Individual class accuracies Average measures

Necrosis Edema Non-enhancing Enhancing Acc Precision Recall F measure

HGG RF Flair 85.42 99.23 83.25 83.38 87.82 0.863 0.846 0.854
T1 84.68 99.23 83.22 83.31 87.61 0.863 0.842 0.851
T1c 86.89 99.23 83.73 83.60 88.36 0.869 0.849 0.858
T2 83.38 99.23 82.49 82.35 86.86 0.857 0.829 0.842

MLP Flair 80.50 99.23 82.14 81.05 85.73 0.849 0.815 0.831
T1 80.47 99.23 81.28 80.22 85.30 0.834 0.821 0.827
T1c 82.58 99.23 81.15 81.21 86.04 0.841 0.830 0.835
T2 78.97 99.23 79.90 80.06 84.54 0.847 0.777 0.809

SVM Flair 78.49 99.23 78.85 77.19 83.44 0.823 0.778 0.799
T1 70.80 99.23 78.69 77.98 81.68 0.840 0.735 0.777
T1c 71.83 99.23 78.09 77.60 81.69 0.804 0.787 0.793
T2 78.43 99.23 77.29 77.76 83.18 0.850 0.732 0.769

NB Flair 71.47 84.56 77.10 77.95 77.77 0.813 0.750 0.772
T1 69.91 84.85 76.94 77.60 77.32 0.808 0.745 0.767
T1c 70.52 85.33 76.17 76.13 77.04 0.795 0.758 0.767
T2 70.90 84.94 78.02 78.56 78.11 0.831 0.731 0.770

LGG RF Flair 85.10 99.30 84.11 81.56 87.52 0.864 0.850 0.857
T1 85.23 99.30 83.73 81.68 87.49 0.866 0.845 0.854
T1c 86.06 99.30 84.43 81.11 87.72 0.869 0.847 0.857
T2 81.62 99.30 83.32 79.83 86.02 0.857 0.825 0.839

MLP Flair 78.81 99.30 82.58 76.04 84.18 0.855 0.781 0.814
T1 82.07 99.30 81.50 75.56 84.61 0.859 0.775 0.811
T1c 81.27 99.30 80.93 77.19 84.67 0.876 0.755 0.804
T2 76.99 99.30 81.21 76.16 83.42 0.847 0.771 0.806

SVM Flair 76.39 99.30 80.26 73.13 82.27 0.795 0.827 0.809
T1 76.74 99.30 80.57 73.87 82.62 0.833 0.767 0.793
T1c 76.90 99.30 80.22 73.80 82.56 0.813 0.798 0.801
T2 75.23 99.24 78.49 72.69 81.41 0.794 75.478 0.773

NB Flair 70.13 85.42 77.07 73.74 76.59 0.816 0.733 0.763
T1 69.46 85.71 75.69 74.12 76.25 0.809 0.735 0.761
T1c 70.01 87.37 75.60 73.87 76.71 0.807 0.743 0.764
T2 68.92 86.57 77.61 74.31 76.85 0.830 0.716 0.759
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DWT and statistical features. With the combined DWT 
and statistical features, the RF classifier achieved the 
highest overall average classification accuracy of 89.59% 
for Flair MR images of the HGG modalities. This was 
the same for the LGG glioma type as RF displayed better 
accuracy than the rest of the classifiers with an average 
accuracy of 90.28%.

When using statistical features only for all modalities 
combined, the RF, MLP, and SVM classifiers achieve 
results within the same range. However, RF showed a 
slight improvement with combined texture and statisti-
cal features for the combined modalities with an aver-
age accuracy of 89.59% for HGG and 90.28% for LGG 
as compared to an average highest accuracy of 88.36% 
and 87.52% for HGG and LGG from Flair MRI modal-
ity shown in Table 1. RF displayed improvement also 
when using combined DWT and statistical features for 
all modalities. For both HGG and LGG, a significant 
improvement of 1.23% and 2.76% has been noticed, 
respectively, with combined features and combined 
modalities. The main reason for getting better accura-
cies for multiclass glioma tumor classification with RF 
is that it is a bagging algorithm that can avoid overfitting. 
RF is an ensemble-based method; thus, it works better 
with a small feature set of tumorous images. RF is a 
combination of multiple decision trees, which partition 
the training set into small subsets until it reaches the 

class uniform. This local learning approach of RF is very 
effective for the characterized data by multiple clusters 
dispersed over the feature space.

Figure 6 shows a visual representation of the data 
obtained in Table 2. It is clear from the figure that RF 
was able to achieve the highest accuracies overall for all 
of the modalities. The visual representation shows that 
MLP achieves the second highest accuracies after RF and 
that the lowest accuracies are achieved when using NB.

5 � Discussions

The proposed combined DWT and statistical feature sets 
are used to classify the four classes of glioma tumors of 
HGG and LGG types. After feature extraction, typical 
classifiers such as RF, naïve Bayes, SVM, and MLP were 
used, and accuracy-based performance was compared. 
In the proposed method, combined DWT and statisti-
cal features from individual modalities were used with 
classifiers: RF, naïve Bayes, SVM, and MLP. The best 
accuracy results were achieved when used with RF clas-
sifier, as shown in Table 1. For the HGG glioma type, the 
best average accuracy of 88.36% was achieved with the 
RF classifier. While using the MLP classifier, the aver-
age accuracy was better but still less than RF for most 
of the classes, ranging from 84.54 to 86.04%. SVM and 

Fig. 5   Comparison of averages 
accuracies for multiclass glioma 
classification using hybrid DWT 
and texture features
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naïve Bayes secured an almost similar kind of accuracy 
range for all classes but less than RF and MLP as shown 
in Table 1. Although the naïve Bayes classifier is simple 
to implement and faster, it is feature-independent for the 
prediction of the probability of the class as observed in 
brain MR images. Different types of glioma tumor pixels 
in the MR image are highly correlated due to the complex 
nature of glioma tumor tissues and brain cells, so the 
features also have a high correlation. Similar kinds of 
results were observed when LGG glioma is classified, 
where again the highest average accuracy was achieved 
when the RF classifier was used, achieving 87.52%. 
From the statistical analysis presented in Table 2, it can 
be stated that RF has the best overall accuracy using 

combined DWT and statistical features for each modality 
which is moderately better than MLP and other classi-
fiers. In Table 2, the classification results were combined 
for all MRI modalities: Flair, T1, T1c, and T2. These 
results were compared for three scenarios. First, only 
DWT features were used with combined modalities, and 
in this case, overall highest accuracy range is secured if 
RF is used as a classifier for both HGG and LGG glioma 
types. In the second case where only statistical features 
were used with combined modalities again, RF secured 
the best averages, but it was close to SVM and MLP for 
both HGG and LGG glioma types. For the third case, 
both DWT and statistical features were combined and 
used which achieved a better accuracy of 89.59% and 
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Fig. 6   Comparison of accuracies glioma classification using hybrid features for combined all modalities

Table 3   Comparison of the 
proposed methods for multiclass 
glioma tumor classification with 
latest literature techniques

Reference Method Data Accuracy

Proposed method (statistical + DWT, RF as classifier) BraTS 90.28%
El-Melegy & El-Magd 

(2019) [36]
Ten statistical features and random forest as classifier BraTS 80.85%

Xue et al. (2020) [37] Dual path residual convolutional neural network BraTS 84.90%
Cho et al. (2018) [38] ROI and radiomics features with ensemble classifier BraTS 89.47%
Cho et al. (2018) [38] ROI and radiomics features with RF classifier BraTS 88.77%
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90.28% for HGG and LGG, respectively. From the sta-
tistical analysis presented in Table 1 and Table 2, it is 
concluded that the combination of DWT and statistical 
features with all modalities combined achieves the best 
accuracies using the RF classifier for both LGG an HGG.

As shown in Table 3, the proposed technique using 
combined DWT and statistical features with RF as a clas-
sifier achieved an accuracy of 90.28% for multiclass clas-
sification. When compared with other recent techniques 
from literature, it is evident that the proposed technique 
outperformed those listed in Table 3.

6 � Conclusion

Brain tumors are one of the fatal diseases and can lead 
to death if not diagnosed early. The early diagnosis of 
brain tumors depends on the early symptoms and the early 
analysis of the brain MRI images by highly skilled profes-
sionals. The requirement of analysis of the brain images by 
highly skilled individuals makes it a costly and time-con-
suming process which means that the analysis cannot be 
done for everyone and only for patients who display early 
symptoms of cancer. In addition, insurance companies will 
not approve these tests for everyone due to the cost factor, 
but even with cost factor aside, skilled professionals have 
a certain capacity that they cannot exceed. Therefore, if an 
automated method can be developed with high accuracy of 
diagnosis, it may be better than the method performed by 
humans because processes performed by humans are prone 
to human errors. In this article, a method is proposed for 
feature extraction from the MRI images. In this method, 
we propose the combination of both textural features 
extracted using the DWT combined with statistical fea-
tures using the first- and second-order statistical features. 
After a thorough comparison of using either the texture 
features and statistical features individually on individual 
modalities and the use of the features combined on com-
bined modalities, the experimental results showed that the 
highest average accuracies were achieved using the com-
bined features (both textural and statistical) on combined 
modalities. The random forest classifier outperformed the 
other classifiers in this study. The results show that the 
average accuracy using the RF classifier with combined 
features on combined modalities is 89.59% for HGG and 
90.28% for LGG. This is higher than any similar method 
reported in recent literature. Future work will continue the 
process to improve the early automatic classification and 
diagnosis of glioma tumors to produce a system that can 
be applied in hospitals with high reliability. In addition, 
the authors are exploring the use of deep learning models 
for other medical conditions that may assist in the auto-
matic diagnosis without human intervention.
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