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Abstract— Seismic facies can be used as novel features to 

classify different classes of seismic structures. Classification of 

seismic structure is beneficial for mineralogy, grain size 

approximation, the permeability of deposition units, and the 

identification of areas of interest. To extract features of seismic 

images, the following extraction methods were used: Discrete 

Wavelet Transform Features, Discrete Cosine Transform 

Features, Discrete Fourier Transform Features, and Gabor 

Features. The classification methods being considered are 

Support Vector Machine (SVM), Random Forest (RF), Fast 

Decision Trees (FDT), and Naïve Bayes (NB). The proposed 

study uses the LANDMASS database, composed of two datasets, 

LANDMASS-1, with 17,667 images, and LANDMASS-2, with 

4,000 images. The datasets contain seismic images of four 

different classes of seismic structures; Chaotic, Fault, Horizon, 

and Salt Dome. The outcome of this study proves that the 

combination of Forest Tree classification method and the 

Discrete Cosine Transform Features extraction method 

achieved the highest accuracy, which was around 94.17% –

higher than that achieved considering similar methods reported 

in the extant literature. 

Keywords— Seismic Facies, Seismic Features, Seismic 

Classification, Seismic Structures. 

I. INTRODUCTION 

Seismic structure classification refers to the interpretation 
and examination of seismic facies from seismic reflector 
information. The fundamental characteristics used to 
distinguish seismic facies are interval velocity, frequency, 
amplitude, lateral continuity, and bedform internal and 
external configuration [1]. The classification of structures 
supports the identification of areas of interest and the 
approximation of grain size, mineralogy, and permeability of 
deposition units. Since 1950, high-resolution seismic images 
produced from seismic reflection imaging have been greatly 
used in oil, gas, and water exploration [2]. Seismic imaging is 
the set of methods that project an intense sound source into 
the ground, receive it back through geophones using observed 
seismograms as inputs, and then record it to examine 
subsurface conditions and distinguish high concentrations of 
contamination. Recordings of signals are then processed into 
images of the geologic structure. The resulting digital model 
of the subsurface may be used to detect preferential flow 
paths, examine the placement and screening of wells, identify 
dense contaminants, and select a remediation technology.   

There are two different types of seismic images, reflected 
waves and refracted waves [3]. Reflected waves move 
downward, hit a geologic boundary, and bounce back to the 
surface. On the contrary, refracted waves turn at a layer of a 

rock or soil surface and pass it before traveling back to the 
surface. They present more subsurface detail but may be 
challenging to interpret when multiple echoes exit.  

Seismic facies classification is interpreted and automated 
using machine learning algorithms and the interpretation of 
seismic data is achieved through fault interpretation, horizon 
interpretation, chaotic interpretation, and salt dome 
interpretation [4]. The datasets used in this research include 
these four distinct seismic structure classes [5]. A horizon is a 
thin bed with a characteristic fossil or lithology content or a 
bedding surface with a marked change in lithology within a 
sequence of volcanic rocks or sedimentary. It represents a 
stratigraphic surface, either lithostratigraphic or 
chronostratigraphic. Examples include volcanic eruptions, 
tsunamis, meteorite impacts, and ice ages. When seismic data 
is interpreted, horizons are the change in seismic velocity and 
density across a boundary between two layers of rock, called 
reflectors, which are identified on individual profiles. A 
horizon is a matrix of samples to be drawn on a map and saved 
in a 3-column ASCII file.  

A chaotic horizon is an unstratified reflection geometry of 
high amplitude reflections that possess discontinuousness 
with other reflectors in a single unit. Unstratified facies are not 
deposited in layers. It has a higher bulk density, shear strength, 
and resistivity.   

A fault is a fracture or a group of fractures between two 
sections of rocks. Faults permit the relative movement of two 
blocks and may vary in length from kilometers to millimeters. 
A fault is divided into a fault core indicating the displacement 
of the rocks and a surrounding damage zone. Fault zone 
identification greatly depends on wave frequency. Zones with 
low wave frequency are broad, offering minimum information 
about facies distribution. However, zones with high wave 
frequencies characterize the fault volume and its internal 
structure from seismic attributes.  

A salt dome is a type of structural dome created through 
diapirism, in which salt or some type of evaporite minerals is 
thrust into overlying rocks. Salt domes can form structures 
like salt plugs, which are salt sheets that intrude from the top 
of the dome, and salt welds, which appear when an extensive 
amount of salt restricts the growth of a dome and the contacts 
above and below merge. Seismic reflection identifies the stark 
density contrast between the salt and its surrounding sediment. 
Salt domes are depressed blocks of crust surrounded by 
parallel normal faults that can be neighbored by reverse faults. 
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This work attempts to tackle the problem of classification 
of various classes of seismic structures, which brings many 
benefits in various research domains such as mineralogy, 
grain size approximation, the permeability of deposition units, 
the identification of areas of interest, etc. The different classes 
of seismic classes that are considered are: Chaotic, Fault, 
Horizon, and Salt Dome. Different machine learning 
techniques will be applied on existing LANDMASS dataset 
following the extraction of novel features using the Discrete 
Wavelet Transform, Discrete Cosine Transform, Discrete 
Fourier Transform, and Gabor Features.  

The rest of the paper is organized as follows. First, we 
present a review of most of the existing work related to the 
application of machine learning techniques on seismic 
imaging classification. Then, the used approach in terms of 
dataset description, feature extraction techniques being used, 
and classification algorithms being applied are detailed. 
Section 4, discusses the achieved performance along with 
results analysis. Finally, in Section 5 conclusions are drawn. 

II. RECENT STUDIES 

In [6], the author proposes using seismic imaging to locate 
salt bodies and salt deposits. The training dataset includes 
101x101 pixels 4000 seismic image patches and segmentation 
masks, and the testing dataset includes 18,000 seismic images. 
The proposed method consists of a convolutional neural 
network (CNN) used for semantic segmentation and the 
proposed architecture of the network is based on the U-Net 
approach combined with ResNet, DenseNet, and U-Net model 
and consists of 5 convolutional layers with a kernel size of 
3x3. In [7], the authors propose using image analysis 
techniques like the histogram of oriented gradients (HOG) for 
seismic image segmentation and geological analysis. The 
methodology identifies HOG features, derives statistical 
parameters related to the texture attributes, and then integrates 
the selected images to separate the targeted section. It also 
considers a new hybrid texture attribute based on HOG 
parameters. It relies on two geometrically synthetic models 
and two field seismic data examples of salt body and mud 
diapirs. The salt body showcases a chaotic pattern with the 
unsharp boundary and the mud diapirs present a mild chaotic 
pattern with thin marginal flows and interdigitated boundary. 
The method can separate distinct seismic patterns and 
geological objects with any shape.  

In [8], the authors propose using machine learning 
algorithms and advanced CNN image processing techniques 
to interpret faults and salt domes for hydrocarbon exploration.  
In [9], the authors use a machine learning based novel 
multiscale attention convolutional neural network (MACNN) 
for fault detection on seismic images for improved geologic 
fidelity. The methodology uses a multiscale spatial-channel 
attention mechanism to join and improve encoder feature 
maps of distinct spatial resolutions and to produce higher 
resolution and higher fidelity fault maps. The developed 
architecture allows MACNN to improve the contextual 
information fixed in the maps. MACNN proved to have higher 
fidelity fault and higher resolution maps compared to 
conventional CNNs.  

In [10], the authors propose a method that uses CNN to 
identify fault zones from 3D seismic images using a 2-step 
method: training and prediction. In the training step, the CNN 
model accepts seismic images and identifies fault or non-fault 
points. Afterward, in the prediction step, the model computes 

faults probabilities at every position in the image and does not 
necessitate precomputed attributes to extract the faults. The 
datasets used are synthetic and field datasets.  In [11], the 
authors suggest using seismic attributes to detect salt bodies 
from migrated images through seismic facies classification 
and fault detection. The study develops a novel deep learning 
method based on Se-ResNet and U-Net. The model was 
examined using K-Fold cross-validation. In addition, the 
dataset is composed of 101x101 pixel images and masks 
which are later transformed into NumPy Array for 
computation. The training of these images was divided into 
two steps: the first 300 epochs model was trained using Dice 
loss and BCE and the second 300 epochs were trained using 
the Lovasz Loss function.   

In [12], researchers develop PDCNN, which is a patch-
based denoising method using deep CNN for seismic images. 
It heavily relies on patch clustering and joint denoising. The 
methodology clusters overlapping patches of noisy photos 
into K classes and thus, each class contains image patches 
with close noise levels. Then, a model from a set of trained 
CNN models is designated for each class. The dataset includes 
both synthetic and field seismic images.  In [13], the authors 
recommend using an end-to-end DNN seismic inversion 
network (SeisInvNets) with novel components to interpret 
seismic data. The spatially aligned feature maps are used to 
build velocity models from the enhanced seismic traces. To 
test the methodology, a dataset with 12,000 pairs of seismic 
data and a velocity model are used.   

In [14], the authors propose using CNN deep learning to 
extract Paleokarst Collapse features in 3D seismic images. 
The workflow produces 3D training pairs including synthetic 
seismic images and label images of the collapsed paleokarst 
features simulated in the seismic images. The methodology 
identifies 3D paleokarst systems and computes their 
geometric parameters.  In [15], the authors propose using a 
deep CNN workflow for fault recognition of 3D seismic 
images. The study open-sources the Thebe dataset and fault 
labels. It uses edge detection networks to detect faults and 
identify areas of high fault probability. The workflow uses 
image processing methods, the fault discretization algorithm, 
and PaleoScan for fault analysis.    

In the next section, the proposed methodology is detailed. 
This includes description of the used datasets, feature 
extraction techniques being used, and classification 
algorithms being applied. 

III. METHODOLOGY 

The proposed methodology makes use of a dataset 
composed of seismic images with 4 different classes, which 
are: Horizons, Salt Domes, Chaotic Horizons, and Fault. 
These images act as an input to 4 feature extraction methods, 
namely: Discrete Wavelet Transform (DWT) Features, 
Discrete Cosine Transform (DCT) Features, and Discrete 
Fourier Transform (DFT) Features, to extract the features 
which will be used during the classification phase. Four 
classification methods are considered, which are: Support 
Vector Machine, Random Forest, Fast Decision Trees, and 
Naïve Bayes. In the proposed approach, performance results 
(in terms of accuracy, precision, recall, and F1 measure) for 
various combinations of feature extraction methods and 
classification algorithms are collected and compared. The best 
possible combination determines the outcome of the paper. 



A. Expiremental Dataset 

This research is conducted on a dataset obtained from the 
School of Electrical and Computer Engineering (ECE) at the 
Georgia Institute of Technology. Georgia Tech and KFUPM 
have collaborated to produce datasets at the Center for Energy 
and Geo-Processing (CeGP) for mineral research purposes. 
The following database is named LANDMASS [15] (LArge 
North-Sea Dataset of Migrated Aggregated Seismic 
Structures) and was extracted from the North Sea F3 block 
under the Creative Commons license (CC BY-SA 3.0) using 
a specific distance measure. This database contains two 
datasets, LANDMASS-1 and LANDMASS-2. The first 
dataset comprises 17,667 images of size 99x99 pixels and a 
normalized value range of [-1, 1] with 9,385 Horizon patches, 
1,891 Salt Dome patches, 5,140 chaotic patches, and 1,251 
Fault patches. The second dataset comprises 4,000 images of 
size 150x300 pixels and a normalized value range of [0,1] 
with 1000 patches for each class. 

The dataset contains four classes of seismic structures. The 
images of these four different classes were verified and photos 
with outliers or more than one structure were eliminated. The 
examined classes are the following. 

1. Horizons: It mostly includes smooth horizons and may 
include sigmoidal-like structures.   

2. Salt Domes: Salt dome structures.  

3. Chaotic Horizons: Horizons with a chaotic-like or 
noisy appearance.  

4. Faults: Images/patches contain one or more faults with 
varying significance. 

Chaotic Fault 

  

Horizon Salt Dome 

  
Fig. 1. Sample images of different Seismic Classes 

B. Proposed Features 

Feature extraction refers to the transformation of raw data 
into relevant numerical features that can be processed. These 
methods use specialized deep networks and algorithms to 
extract features from images and signals. They represent the 
desired sections of an image as a compact feature vector. 
Feature extraction involves the reduction of redundant data 
from a dataset that may lead to challenges while analyzing and 
examining images with many variables and cause the 
classification algorithm to overfit to training samples. 

The proposed features includes Discrete Wavelet 
Transform (DWT), Discrete Cosine Transform (DCT), 
Discrete Fourier Transform (DFT) and Gabor Features.  

a) Discrete Wavelet Transform Features: DWT is a 

linear transformation method in which the wavelet variance 

decomposes a signal or variance into several sets of wavelet 

basis functions [16-17]. Each component is a time series of 

coefficients specifying the time evolution of the signal in the 

corresponding sinusoid with a specific frequency band. The 

methodology extract features from time series to construct a 

classification model. The strength of each set in the 

decomposition indicates the extent of variability between 

adjacently located averages. The method relies on wavelet 

variance/wavelet spectrum to eventually produce an analysis 

of variance. It relies on the spectral analysis technique that 

uses the Fourier-based spectral density function.  

The algorithm used to calculate the 1-D DWT functions 
on a vector x of length 2n, where n is an integer, produces a 
transformed vector w of equal length. Vector x is filtered with 
a discrete-time, low-pass filter of a specific length at intervals 
of two. These values are then stored in the first eight elements 
of w. Afterward, vector x is filtered with a discrete-time, high-
pass filter of a given length at intervals of two. These values 
are again stored in the last eight elements of w. The image 
divides into 4 sub-bands, low-resolution image, horizontal, 
vertical, and diagonal. It can then be divided into several 
levels. The method has high computational efficiency due to 
its exceptional localization properties. Furthermore, the 
images it produces can be reconstructed and returned to their 
original state. It is also suitable for spectral analysis/time-
frequency analysis and signal denoising. Some of its 
disadvantages include the lack of directional selectivity. It is 
also not suitable for pure stationary analysis and is 
computationally intensive for fine analysis. Additionally, the 
method has a less efficient discretization. 

b) Discrete Cosine Transform Features: This method 

divides the image into spectral sub-bands of differing 

importance with respect to the image’s visual quality [18]. It 

is a set of basic functions which takes an array of size of (n×n) 

as input to be calculated by the DCT formula and then stored. 

The 64 basic functions are shown by an image where the 

horizontal frequencies decrease from right to left, and vertical 

frequencies decrease from bottom to top. It produces an 

image after calculating the summation of sinusoids of 

differing magnitudes and frequencies. Furthermore, two 

approaches are used to process the DCT using Image 

Processing Toolbox software. The first approach is to use the 

FFT-based algorithm, 2-D discrete cosine transform, to 

process large inputs in a fast manner. The second approach is 

to use the DCT transform matrix as an output of the function. 

It is similar to the Discrete Fourier Transform as both 

transform a signal from the spatial domain to the frequency 

domain. The methodology has the ability to approximate 

lines with fewer coefficients. It is suitable for image 

compression applications because the visually important data 

of the image is concentrated in a few coefficients, and is also 

suitable for small square inputs, such as (8x8) or (16x16). 

Another advantage of the method is that the output for 

constant matrices is composed of a large number of zero 

values. However, it requires a quantization step to process the 

values in each DCT block, which produces an integer-valued 



output. Without the quantization step, the output values are 

real-valued. Equation 1 describes the 1D DCT [19]. 

𝐹(𝑢) = (
2

𝑁
)

1

2∑ 𝐴(𝑖). cos⁡[
𝜋.𝑢

2.𝑁

𝑁−1
𝑖=0 (2𝑖 + 1)]𝑓(𝑖)       (1) 

 

Because it is an invertible transform, the inverse is shown in 

Equation 2. 

𝐴(𝑖) = {
1

√2

1
⁡⁡
𝑓𝑜𝑟⁡ᶓ = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (2) 

 

c) Discrete Fourier Transform Features: DFT is used 

for digital signal processing. The method transforms an 

aperiodic signal from the time domain to the frequency 

domain. The major applications of DFT are calculating a 

signal’s frequency spectrum and finding a system’s 

frequency response from the system’s impulse response. We 

can extract features either from the time or frequency domain. 

90% of computations in CNNs are convolutions, and Fast 

Fourier Transform diminishes the intensity of such 

computations by replacing them with input and filter 

matrices, which are then converted into the frequency domain 

to perform multiplications. The output is then processed by 

inverse FFT for it to be transformed back into the time 

domain. The method reduces the complexity of computations 

from exponential to logarithmic. It is easy to program and 

implement in any coding language. One disadvantage 

includes having a frequency domain matrix that is more 

complex than its input. It also requires additional memory 

space, bandwidth, and long computational time. A digital 

computer cannot directly use this equation to analyze the 

signal. It must use samples of the output of the equation to 

compute an approximation of the spectrum of the input signal 

as shown in Equation 3 and its inverse in Equation 4. 

 

A(ej⁡ω) = ⁡∑ a⁡(⁡i)e−⁡j⁡i⁡ω∞
i=−⁡∞   (3) 

 

A(i) = ⁡
1

2π
⁡∫ A⁡(⁡ej⁡ω)e⁡j⁡i⁡ω⁡dω

π

−π
  (4) 

 

d) Gabor Features: The Gabor feature extraction 

method extracts the Gabor features of grey-scale images from 

different scales and orientations [20]. These features are 

extracted from gray-scale character images by Gabor filters. 

These filters are a sinusoidal signal with a given frequency 

and orientation and are constructed from statistical 

information of character structures. They are linear filters 

used for texture analysis to interpret frequency content in a 

specific region. The output of the Gabor filters is used to 

construct histogram features to better differentiate between 

the extracted features. To use this method, first, calculate 

Gabor features at a specific scale and orientation to obtain a 

set of filters. Then, each filter is convolved with the image to 

acquire 40 representations of each image. Each image offers 

a feature vector. After convolution, the Response Matrices 

are converted to feature vectors. Feature vectors are 

composed of mean amplitude, phase-amplitude, local energy, 

or orientation having max energy local. Eventually, the 

matrices are appended to create a feature matrix. For low-

quality images, an adaptive sigmoid function is implemented 

on the output of Gabor filters to enhance the performance. 

The method is suitable for low-quality recognition and 

exhibits low invariant properties of the extracted features. 

However, it must be used several times from different angles. 

If the filter has a DC component, it will produce an unwanted 

effect of enhancing bright smooth regions. The filter’s 

bandwidth must be narrow to constrict the DC component. 

C. Classification 

Image classification refers to the process of defining a set 
of target classes, which are objects to identify in images, and 
training a model to distinguish between them using labeled 
images. In other words, it is the process of analyzing an image 
and then categorizing the class or group the image falls under. 
Classification involves the comparison of the image’s patterns 
to the target pattern. For the model to classify images, data is 
preprocessed, and the desired objects are detected and then 
labeled within the image set. The proposed model uses the 
following 4 classification algorithms: Support Vector 
Machine (SVM), Random Forest (RF), Fast Decision Trees 
(FDT), and Naïve Bayes (NB). These are briefly described 
next. 

a) Support Vector Machine: SVM is a linear model for 

classification and regression problems. The algorithm simply 

creates a line or a hyperplane to divide the data into classes 

[21-22]. We specify the support vectors, which are the points 

closest to the line from both classes, and then calculate the 

margin, which is the distance between the line and the support 

vectors. The method works to raise the value of this margin 

to reach the optimal hyperplane. A hyperplane is a flat 1-

dimensional subset of the space that divides the data into two 

individual sections in an n-dimensional Euclidean space. If 

the data is not linearly separable, an additional dimension 

must be added and then the decision boundary is set to its 

original dimensions using mathematical transformation. 

Afterward, place the points in one array, the classes they are 

a part of in another array, and train the SVM model the 

dataset using a linear kernel. Furthermore, SVM could be 

implemented using the scikit-learn library by importing it, 

creating an object, constructing the mode, and predicting 

results. The method is suitable for many practical problems 

with a clear margin of separation. It can solve both linear and 

non-linear problems and works best in high dimensional 

spaces, and in situations where the number of samples is less 

than the number of dimensions. It is memory efficient as it 

uses a subset of the support vectors in the decision function. 

However, it has a high training time when the dataset is large 

and is not suitable for a dataset with noise also, it does not 

offer probability estimates. Equation 5 show the decision 

function which based on the decision rule as shown in 

Equation 6 and when −𝑥 as y, we get Equation 7. 

𝐶 =⁡{
⁡1⁡𝑖𝑓⁡𝐴⁡. 𝑏⃗⃗ + 𝑦⁡ ≥ ⁡0⁡

⁡−1⁡𝑖𝑓⁡𝐴⁡. 𝑏⃗⃗ + 𝑦⁡ < ⁡0⁡⁡
  (5) 

𝐴⁡. 𝑏⃗⃗ − 𝑥⁡ ≥ ⁡0    (6) 

 

𝐴⁡. 𝑏⃗⃗ + 𝑦⁡ ≥ ⁡0    (6) 

b) Random Forest: The Random Forest model is based 

on decision trees that operate as an ensemble and are trained 

with the bagging method, a collection of learning models 

[23]. The method builds several decision trees and combines 

them to obtain a stable prediction. Firstly, it takes random 

records from a dataset, and individual decision trees are built 

for each sample. The feature space is restricted when 



constructing a tree to produce trees that could be 

distinguished. Each decision tree produces an output based 

on Majority Voting or Averaging for classification. The 

method can easily size the significance of each input feature 

on the prediction. It has high versatility and can produce 

accurate prediction results due to the default hyperparameters 

used. It is fast to train and has the ability to handle datasets 

with continuous variables in regression, and categorical 

variables in classification. It exhibits high stability as results 

are based on Majority Voting or Averaging. Furthermore, it 

makes full use of the CPU to construct random forests as each 

tree is shaped based on distinct data and attributes. It does not 

require the separation of data for training and testing as 30% 

of the dataset will not be used by the decision tree.  

However, overfitting could occur if there aren’t enough 
trees in the forest and the method could be inefficient when a 
huge number of trees are inputted. Additionally, higher 
accuracy needs more trees, leading to a slower operating 
model. 

c) Fast Decision Trees: It is based on a conditional 

independence assumption. The algorithm has a pseudo-

polynomial time complexity, which depends on the size of 

the training data and the number of attributes [24].  The 

decision tree is obtained from a set of labeled training 

instances represented by a tuple of attribute values and a class 

label. The tree is incrementally built using binary recursive 

partitioning, which separates training data into sections on 

the feature that results in the largest information gain (IG) and 

creates a hierarchical structure. This step reduces the 

uncertainty towards the end outcome. It clusters data into 

dense and empty regions and classifies them based on their 

classes. The algorithm first specifies a test for the root node 

and creates a branch for all possible outcomes. It then splits 

each branch recursively into subsets and terminates the 

recursion if all its instances have the same class. Setting a 

limitation on the depth of the tree avoids overfitting. The 

method has the same speed as naïve Bayes but is more 

accurate. It requires no parameters, excludes insignificant 

features, and has the ability to manage mixed-type data. It is 

easy to interpret for small-sized trees and is speedy for 

unknown records classification.  However, it does not 

properly handle missing values and it could be biased toward 

branches with a greater number of levels. Furthermore, 

interpreting big sized can be challenging and maybe counter 

intuitive. 

d) Naïve Bayes: The method is based on the Bayes 

theorem [25]. For each class variable, the methodology 

assumes that the value of a certain characteristic is 

independent of the value of any other characteristic. It uses 

maximum likelihood for parameter estimation and therefore, 

it is unnecessary to use Bayesian methods or Bayesian 

probability. The method organizes the dataset into a 

frequency table. Second, it creates a likelihood table using 

probabilities like the probability of playing and Overcast 

probability. Next, the posterior probability of each class is 

computed using the Naïve Bayesian equation. The highest 

posterior probability class is the result of the prediction. The 

method is suitable for recommendation systems, document 

classification, sentiment analysis, and spam filtering. It is 

better suited for categorical input variables than numerical 

variables. It also requires a minimum amount of training data 

to predict the necessary parameters. It is faster and easier to 

implement than many methods and is useful for large-sized 

data sets and multi-class prediction. However, predictors and 

features are independent and if the categorical variable has a 

category that has not been examined in the training set, a Zero 

Frequency state occurs, which means the classifier will not 

complete the classification and the probability will be 0. It is 

also a bad estimator. The Bayes theorem is based on the 

Equation 8 and the classification rule for Naïve Bayes is 

based on the Equation 9 and Equation 10. 

𝑃(𝑋⁡|⁡𝑌) = ⁡
𝑃(𝑌⁡|⁡𝑋)⁡𝑃(𝑋)

𝑃(𝐵)
    (8) 

 

𝑃(𝑛⁡|⁡𝑚1, 𝑚2, . . . . . , 𝑚𝑠) ∝ 𝑃(⁡𝑛)∏ 𝑃(⁡𝑚𝑖⁡|⁡𝑛)
𝑠
𝑖=1  (9) 

 

𝑛̂ = arg lim
𝑛
𝑃(⁡𝑛)∏ 𝑃(⁡𝑚𝑖⁡|⁡𝑛)

𝑠
𝑖=1    (10) 

 

IV. RESULTS AND DISCUSSIONS 

The proposed methodology was tested on the 
LANDMASS dataset previously described. The dataset acted 
as an input to extract the features present in the seismic images 
using four different extraction methods, Discrete Wavelet 
Transform for Features, Discrete Cosine Transform Features, 
Discrete Fourier Transform Features, and Gabor Features. 
Afterward, each feature extraction method used a classifier to 
classify the obtained features based on the four different 
seismic classes, Chaotic, Fault, Horizon, and Salt Dome. The 
accuracy, precision, recall, and F1 measure results of the 
classification methods, Support Vector Machine, Random 
Forest, Fast Decision Trees, and Naïve Bayes. As shown in 
Table 1, Table 2, and Table 4, the RF method yielded the 
highest accuracy, recall, and F1 measure among all different 
classification techniques used in the study. The highest 
precision was attained using the SVM method. However, RF 
managed to obtain high values in this success-measuring 
parameter for DWT features, DCT features, and Gabor 
Features. Therefore, the highest achieving classifier was the 
Random Forest method to classify the extraction methods 
previously stated. 

TABLE I.  COMPARISON OF DIFFERENT CLASSIFIER RESULTS BASED 

ON THE DWT FEATURES 

 Accuracy Precision Recall F1 Measure 

RF 87.46 0.86 0.81 0.83 

FDT 78.78 0.74 0.72 0.73 

Naïve Byes 53.82 0.52 0.56 0.54 

SVM 65.76 1.00 0.22 0.36 

TABLE II.  COMPARISON OF DIFFERENT CLASSIFIER RESULTS BASED 

ON THE DCT FEATURES 

 Accuracy Precision Recall F1 Measure 

RF 94.17 0.92 0.92 0.92 

FDT 91.57 0.89 0.89 0.89 

Naïve Byes 72.13 0.68 0.77 0.73 

SVM 65.76 1.00 0.22 0.36 

 



In Table 3, the highest accuracy was achieved by RF with 
a value of 86.24% with precision 0.79, recall 0.85. The highest 
recall was realized by Naïve Byes with a value of 0.96, and 
the highest accuracy and F1 measure were achieved by RF 
with a value of 86.24%, and 0.82, respectively. The highest 
performing classifier based on the DFT feature extracting 
method is RF, which received high scores in all success-
measuring parameters. In Table 4, the highest accuracy was 
achieved by RF with a value of 76.91% with precision 0.73, 
recall 0.57. 

TABLE III.  COMPARISON OF DIFFERENT CLASSIFIER RESULTS BASED 

ON THE DFT FEATURES 

 Accuracy Precision Recall F1 Measure 

RF 86.24 0.79 0.85 0.82 

FDT 78.62 0.74 0.77 0.75 

Naïve Byes 30.33 0.29 0.96 0.45 

SVM 69.44 0.94 0.32 0.48 

TABLE IV.  COMPARISON OF DIFFERENT CLASSIFIER RESULTS BASED 

ON THE GABOR FEATURES 

 Accuracy Precision Recall F1 Measure 

RF 76.91 0.73 0.57 0.64 

FDT 59.45 0.45 0.38 0.41 

Naïve Byes 57.81 0.47 0.52 0.49 

SVM 65.76 1.00 0.22 0.36 

 

The highest achieved accuracy was obtained by the 
Random Forest classification method based on DCT features 
with a value of 94.17% as shown in Table 2. The highest 
obtained precision was again achieved by DCT features after 
using the RF method with a value of 0.92. DCT successfully 
attained the highest F1 measure value of 0.92 and has a high 
0.92 precision score. Therefore, the combination of Random 
Forest classification method and the Discrete Cosine 
Transform Features extraction method leads to the most 
desirable results to classify seismic structures in seismic 
images. 

V. CONCLUSION 

Novel features in seismic images are used to categorize 
different classes of seismic structures. The classification of 
seismic facies supports in the approximation of grain size, 
mineralogy, the permeability of deposition units, and in the 
identification of areas of interest. The proposed methodology 
uses the LANDMASS database, composed of two datasets, 
LANDMASS-1, with 17667 images, and LANDMASS-2, 
with 4000 images. The datasets contain seismic images of four 
different classes of seismic structures, Chaotic, Fault, 
Horizon, and Salt Dome. The feature extraction methods used 
were Discrete Wavelet Transform for Features, Discrete 
Cosine Transform Features, Discrete Fourier Transform 
Features, and Gabor Features. Next, classification methods 
were implemented to classify the novel features. These 
classification methods are Support Vector Machine, Random 
Forest, Fast Decision Trees, and Naïve Bayes. The results of 
this paper suggest that the combination of Random Forest 
classification method and the Discrete Cosine Transform 
Features extraction method acquires the highest achieving 

results to classify novel features of seismic structures in 
seismic images. To interpret the results and measure the 
success of feature-extracting and classification methods, 
accuracy, precision, recall, and F1 measure were the success-
measuring parameters. The achieved accuracy of this 
combination is 94.17% with precision, recall, and F1 measure 
of 0.92. 
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